TY - JOUR
T1 - Individual Aircraft Noise Exposure Assessment for a Case-Crossover Study in Switzerland
AU - Saucy, Apolline
AU - Schäffer, Beat
AU - Tangermann, Louise
AU - Vienneau, Danielle
AU - Wunderli, Jean-Marc
AU - Röösli, Martin
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020
Y1 - 2020
N2 - Accurate exposure assessment is essential in environmental epidemiological studies. This is especially true for aircraft noise, which is characterized by a high spatial and temporal variation. We propose a method to assess individual aircraft noise exposure for a case-crossover study investigating the acute effects of aircraft noise on cardiovascular deaths. We identified all cases of cardiovascular death (24,886) occurring near Zürich airport, Switzerland, over fifteen years from the Swiss National Cohort. Outdoor noise exposure at the home address was calculated for the night preceding death and control nights using flight operations information from Zürich airport and noise footprints calculated for major aircraft types and air routes. We estimated three different noise metrics: mean sound pressure level (LAeq), maximum sound pressure level (LAmax), and number above threshold 55 dB (NAT55) for different nighttime windows. Average nighttime aircraft noise levels were 45.2 dB, 64.6 dB, and 18.5 for LAeq, LAmax, and NAT55 respectively. In this paper, we present a method to estimate individual aircraft noise exposure with high spatio-temporal resolution and a flexible choice of exposure events and metrics. This exposure assessment will be used in a case-crossover study investigating the acute effects of noise on health.
AB - Accurate exposure assessment is essential in environmental epidemiological studies. This is especially true for aircraft noise, which is characterized by a high spatial and temporal variation. We propose a method to assess individual aircraft noise exposure for a case-crossover study investigating the acute effects of aircraft noise on cardiovascular deaths. We identified all cases of cardiovascular death (24,886) occurring near Zürich airport, Switzerland, over fifteen years from the Swiss National Cohort. Outdoor noise exposure at the home address was calculated for the night preceding death and control nights using flight operations information from Zürich airport and noise footprints calculated for major aircraft types and air routes. We estimated three different noise metrics: mean sound pressure level (LAeq), maximum sound pressure level (LAmax), and number above threshold 55 dB (NAT55) for different nighttime windows. Average nighttime aircraft noise levels were 45.2 dB, 64.6 dB, and 18.5 for LAeq, LAmax, and NAT55 respectively. In this paper, we present a method to estimate individual aircraft noise exposure with high spatio-temporal resolution and a flexible choice of exposure events and metrics. This exposure assessment will be used in a case-crossover study investigating the acute effects of noise on health.
KW - exposure assessment case-crossover aircraft noise cardiovascular diseases
U2 - 10.3390/ijerph17093011
DO - 10.3390/ijerph17093011
M3 - Article
SN - 1660-4601
VL - 17
JO - International journal of environmental research and public health
JF - International journal of environmental research and public health
IS - 9
M1 - 3011
ER -