TY - JOUR
T1 - Inactivation of recombinant human tumor necrosis factor-α by proteolytic enzymes released from stimulated human neutrophils
AU - Van Kessel, K. P.M.
AU - Van Strijp, J. A.G.
AU - Verhoef, J.
PY - 1991/1/1
Y1 - 1991/1/1
N2 - Activated human neutrophils (PMN) degrade rTNF-α resulting in a loss of cytotoxic activity against murine L-929 cells (L cells). This inactivation is mediated through proteases released from activated PMN. Exposure of TNF to H2O2, glucose oxidase, xanthine oxidase, or myeloper-oxidase-H2O2-halide did not affect TNF cytotoxicity for L cells. Exposure to trypsin, chymotrypsin, pronase E, or elastase, however, did diminish TNF bioactivity. FMLP-stimulated PMN in the presence, but not in the absence, of cytochalasin B reduced TNF activity, whereas PMA-stimulated PMN did not affect TNF. Stimulation of PMN with opsonized bacteria also induced TNF inactivation as well as the supernatant of FMLP-stimulated cells. Addition of protease inhibitors to the FMLP-stimulated cytochalasin B-treated PMN abrogated the inactivation of TNF cytotoxicity for L cells, whereas scavengers were not protective. In addition, PMN from a chronic granulomatous disease patient also decreased TNF bioactivity. Inactivation of TNF by activated PMN correlated with granule release and not with superoxide production. Exposure of TNF to proteases and FMLP-activated PMN also resulted in a loss of reactivity with anti-TNF antibodies, as measured by ELISA, and in the formation of an approximately 10-kDa split product from the 17-kDa rTNF molecule. Partial degradation of TNF by proteases released from activated PMN may result in a diminished TNF bioactivity and thereby contribute to the regulation of local inflammatory reactions.
AB - Activated human neutrophils (PMN) degrade rTNF-α resulting in a loss of cytotoxic activity against murine L-929 cells (L cells). This inactivation is mediated through proteases released from activated PMN. Exposure of TNF to H2O2, glucose oxidase, xanthine oxidase, or myeloper-oxidase-H2O2-halide did not affect TNF cytotoxicity for L cells. Exposure to trypsin, chymotrypsin, pronase E, or elastase, however, did diminish TNF bioactivity. FMLP-stimulated PMN in the presence, but not in the absence, of cytochalasin B reduced TNF activity, whereas PMA-stimulated PMN did not affect TNF. Stimulation of PMN with opsonized bacteria also induced TNF inactivation as well as the supernatant of FMLP-stimulated cells. Addition of protease inhibitors to the FMLP-stimulated cytochalasin B-treated PMN abrogated the inactivation of TNF cytotoxicity for L cells, whereas scavengers were not protective. In addition, PMN from a chronic granulomatous disease patient also decreased TNF bioactivity. Inactivation of TNF by activated PMN correlated with granule release and not with superoxide production. Exposure of TNF to proteases and FMLP-activated PMN also resulted in a loss of reactivity with anti-TNF antibodies, as measured by ELISA, and in the formation of an approximately 10-kDa split product from the 17-kDa rTNF molecule. Partial degradation of TNF by proteases released from activated PMN may result in a diminished TNF bioactivity and thereby contribute to the regulation of local inflammatory reactions.
UR - http://www.scopus.com/inward/record.url?scp=0025790451&partnerID=8YFLogxK
M3 - Article
C2 - 1940372
AN - SCOPUS:0025790451
SN - 0022-1767
VL - 147
SP - 3862
EP - 3868
JO - Journal of Immunology
JF - Journal of Immunology
IS - 11
ER -