In vivo activation of gene transcription via oestrogen response elements by a raloxifene analogue

Translated title of the contribution: In vivo activation of gene transcription via oestrogen response elements by a raloxifene analogue

C. Engdahl, C. Jochems, J.A. Gustafsson, P.T. van der Saag, H. Carlsten, M.K. Lagerquist

    Research output: Contribution to journalArticleAcademicpeer-review

    Abstract

    Raloxifene is a selective oestrogen receptor modulator with tissue-specific effects. The mechanisms behind the effects of raloxifene are partly unclear, and the aim of the present stud), was to investigate whether raloxifene can activate the classical oestrogen-signalling Pathway in vivo in three known oestrogen-responsive organs, uterus (reproductive organ), bone (non-reproductive organ) and thymus (immune organ). For this purpose, we have used reporter mice with a luciferase gene under control of oestrogen-responsive elements (EREs), enabling detection of in vivo activation of gene transcription via the classical oestrogen pathway. Three-month-old ovariectomized ERE-luciferase mice were treated with the raloxifene analogue (LY117018), oestradiol (OE2) or vehicle for 3 weeks. Luciferase activation was measured in bone, uterus and thymus, and compared to bone parameters, and uterus and thymus weights. The raloxifene analogue affected bone mineral density (BMD) to the same extent as OE2, and both treatments resulted in increased luciferase activity in bone. As expected, OE2 treatment resulted in increased uterus weight and increased uterine luciferase activity, while the effect of LY117018 oil uterus weight and luciferase activity was modest and significantly lower than the effect of OE2. LY117018 and OE2 treatment resulted in similar luciferase activation in thymus. However, only OE2 treatment resulted in thymic atrophy, while no effect on thymus weight was seen after LY117018 treatment. In summary, the raloxifene analogue LY117018 can activate the classical oestrogen pathway in bone, uterus and thymus in vivo, and this activation is associated with BMD and uterus weight, but not thymus weight. journal of Endocrinology (2009) 203, 349-356
    Translated title of the contributionIn vivo activation of gene transcription via oestrogen response elements by a raloxifene analogue
    Original languageUndefined/Unknown
    Pages (from-to)349-356
    Number of pages8
    JournalJournal of Endocrinology
    Volume203
    Issue number3
    Publication statusPublished - 2009

    Fingerprint

    Dive into the research topics of 'In vivo activation of gene transcription via oestrogen response elements by a raloxifene analogue'. Together they form a unique fingerprint.

    Cite this