TY - JOUR
T1 - Hyperbaric oxygen stimulates epidermal reconstruction in human skin equivalents
AU - Kairuz, Evette
AU - Upton, Zee
AU - Dawson, Rebecca A.
AU - Malda, Jos
PY - 2007/3/1
Y1 - 2007/3/1
N2 - The crucial role of oxygen during the complex process of wound healing has been extensively described. In chronic or nonhealing wounds, much evidence has been reported indicating that a lack of oxygen is a major contributing factor. Although still controversial, the therapeutic application of hyperbaric oxygen (HBO) therapy can aid the healing of chronic wounds. However, how HBO affects reepithelization, involving processes such as keratinocyte proliferation and differentiation, remains unclear. We therefore used a three-dimensional human skin-equivalent (HSE) model to investigate the effects of daily 90-minute HBO treatments on the reconstruction of an epidermis. Epidermal markers of proliferation, differentiation, and basement membrane components associated with a developing epidermis, including p63, collagen type IV, and cytokeratins 6, 10, and 14, were evaluated. Morphometric analysis of hematoxylin and eosin-stained cross sections revealed that HBO treatments significantly accelerated cornification of the stratum corneum compared with controls. Protein expression as determined by immunohistochemical analysis confirmed the accelerated epidermal maturation. In addition, early keratinocyte migration was enhanced by HBO. Thus, HBO treatments stimulate epidermal reconstruction in an HSE. These results further support the importance of oxygen during the process of wound healing and the potential role of HBO therapy in cutaneous wound healing.
AB - The crucial role of oxygen during the complex process of wound healing has been extensively described. In chronic or nonhealing wounds, much evidence has been reported indicating that a lack of oxygen is a major contributing factor. Although still controversial, the therapeutic application of hyperbaric oxygen (HBO) therapy can aid the healing of chronic wounds. However, how HBO affects reepithelization, involving processes such as keratinocyte proliferation and differentiation, remains unclear. We therefore used a three-dimensional human skin-equivalent (HSE) model to investigate the effects of daily 90-minute HBO treatments on the reconstruction of an epidermis. Epidermal markers of proliferation, differentiation, and basement membrane components associated with a developing epidermis, including p63, collagen type IV, and cytokeratins 6, 10, and 14, were evaluated. Morphometric analysis of hematoxylin and eosin-stained cross sections revealed that HBO treatments significantly accelerated cornification of the stratum corneum compared with controls. Protein expression as determined by immunohistochemical analysis confirmed the accelerated epidermal maturation. In addition, early keratinocyte migration was enhanced by HBO. Thus, HBO treatments stimulate epidermal reconstruction in an HSE. These results further support the importance of oxygen during the process of wound healing and the potential role of HBO therapy in cutaneous wound healing.
UR - http://www.scopus.com/inward/record.url?scp=33847693195&partnerID=8YFLogxK
U2 - 10.1111/j.1524-475X.2007.00215.x
DO - 10.1111/j.1524-475X.2007.00215.x
M3 - Article
C2 - 17352760
AN - SCOPUS:33847693195
SN - 1067-1927
VL - 15
SP - 266
EP - 274
JO - Wound Repair and Regeneration
JF - Wound Repair and Regeneration
IS - 2
ER -