TY - JOUR
T1 - Hyaluronic Acid-Based Hydrogel Coating Does Not Affect Bone Apposition at the Implant Surface in a Rabbit Model
AU - Boot, W.
AU - Gawlitta, Debby
AU - Nikkels, P. G J
AU - Pouran, B.
AU - van Rijen, M. H P
AU - Dhert, W. J A
AU - Vogely, H. C.
N1 - Funding Information:
Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article. The institution of the authors (WB, BP, MR, HV) received, during the study period, funding from the European Commission, 7th Framework Programme on Research Technological Development and Demonstration (Grant no. 277988) under the multicenter Collaborative Project Implant Disposable Antibacterial Coating (IDAC). The institution of the authors (WB, BP, MR, HV) received, during the study period, research funding from Zimmer Biomet Group, USA. All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research® editors and board members are on file with the publication and can be viewed on request. Clinical Orthopaedics and Related Research® neither advocates nor endorses the use of any treatment, drug, or device. Readers are encouraged to always seek additional information, including FDA-approval status, of any drug or device prior to clinical use. Each author certifies that his or her institution approved the animal
Funding Information:
The institution of the authors (WB, BP, MR, HV) received, during the study period, funding from the European Commission, 7thFramework Programme on Research Technological Development and Demonstration (Grant no. 277988) under the multicenter Collaborative Project Implant Disposable Antibacterial Coating (IDAC). The institution of the authors (WB, BP, MR, HV) received, during the study period, research funding from Zimmer Biomet Group, USA.
Publisher Copyright:
© 2017, The Author(s).
PY - 2017/7
Y1 - 2017/7
N2 - Background: Uncemented orthopaedic implants rely on the bone-implant interface to provide stability, therefore it is essential that a coating does not interfere with the bone-forming processes occurring at the implant interface. In addition, local application of high concentrations of antibiotics for prophylaxis or treatment of infection may be toxic for osteoblasts and could impair bone growth. Questions/Purposes: In this animal study, we investigated the effect of a commercially available hydrogel, either unloaded or loaded with 2% vancomycin. We asked, does unloaded hydrogel or hydrogel with vancomycin (1) interfere with bone apposition and timing of bone deposition near the implant surface; and (2) induce a local or systemic inflammatory reaction as determined by inflammation around the implant and hematologic parameters. Methods: In 18 New Zealand White rabbits, an uncoated titanium rod (n = 6), a rod coated with unloaded hydrogel (n = 6), or a rod coated with 2% vancomycin-loaded hydrogel (n = 6) was implanted in the intramedullary canal of the left tibia. After 28 days, the bone volume fraction near the implant was measured with microCT analysis, inflammation was semiquantitatively scored on histologic sections, and timing of bone apposition was followed by semiquantitative scoring of fluorochrome incorporation on histologic sections. Two observers, blinded to the treatment, scored the sections and reconciled their scores if there was a disagreement. The hematologic inflammatory reaction was analyzed by measuring total and differential leukocyte counts and erythrocyte sedimentation rates in blood. With group sizes of six animals per group, we had 79% power to detect a difference of 25% in histologic scoring for infection and inflammation. Results: No differences were found in the amount of bone apposition near the implant in the No Gel group (48.65% ± 14.95%) compared with the Gel group (59.97% ± 5.02%; mean difference [MD], 11.32%; 95% CI, −3.89% to 26.53%; p = 0.16) or for the Van2 group (56.12% ± 10.06%; MD, 7.46; 95% CI, −7.75 to 22.67; p = 0.40), with the numbers available. In addition, the scores for timing of bone apposition did not differ between the No Gel group (0.50 ± 0.55) compared with the Gel group (0.33 ± 0.52; MD, −0.17; 95% CI, −0.86 to 0.53; p = 0.78) or the Van2 group (0.83 ± 0.41; MD, 0.33; 95% CI, −0.36 to 1.03; p = 0.42). Furthermore, we detected no differences in the histopathology scores for inflammation in the No Gel group (2.33 ± 1.67) compared with the Gel group (3.17 ± 1.59; MD, 0.83; 95% CI, −0.59 to 2.26; p = 0.31) or to the Van2 group (2.5 ± 1.24; MD, 0.17; 95% CI, −1.26 to 1.59; p = 0.95). Moreover, no differences in total leukocyte count, erythrocyte sedimentation rate, and neutrophil, monocyte, eosinophil, basophil, and lymphocyte counts were present between the No Gel or Van2 groups compared with the Gel control group, with the numbers available. Conclusion: The hydrogel coated on titanium implants, unloaded or loaded with 2% vancomycin, had no effect on the volume or timing of bone apposition near the implant, and did not induce an inflammatory reaction in vivo, with the numbers available. Clinical relevance: Antibiotic-loaded hydrogel may prove to be a valuable option to protect orthopaedic implants from bacterial colonization. Future clinical safety studies will need to provide more evidence that this product does not impair bone formation near the implant and prove the safety of this product.
AB - Background: Uncemented orthopaedic implants rely on the bone-implant interface to provide stability, therefore it is essential that a coating does not interfere with the bone-forming processes occurring at the implant interface. In addition, local application of high concentrations of antibiotics for prophylaxis or treatment of infection may be toxic for osteoblasts and could impair bone growth. Questions/Purposes: In this animal study, we investigated the effect of a commercially available hydrogel, either unloaded or loaded with 2% vancomycin. We asked, does unloaded hydrogel or hydrogel with vancomycin (1) interfere with bone apposition and timing of bone deposition near the implant surface; and (2) induce a local or systemic inflammatory reaction as determined by inflammation around the implant and hematologic parameters. Methods: In 18 New Zealand White rabbits, an uncoated titanium rod (n = 6), a rod coated with unloaded hydrogel (n = 6), or a rod coated with 2% vancomycin-loaded hydrogel (n = 6) was implanted in the intramedullary canal of the left tibia. After 28 days, the bone volume fraction near the implant was measured with microCT analysis, inflammation was semiquantitatively scored on histologic sections, and timing of bone apposition was followed by semiquantitative scoring of fluorochrome incorporation on histologic sections. Two observers, blinded to the treatment, scored the sections and reconciled their scores if there was a disagreement. The hematologic inflammatory reaction was analyzed by measuring total and differential leukocyte counts and erythrocyte sedimentation rates in blood. With group sizes of six animals per group, we had 79% power to detect a difference of 25% in histologic scoring for infection and inflammation. Results: No differences were found in the amount of bone apposition near the implant in the No Gel group (48.65% ± 14.95%) compared with the Gel group (59.97% ± 5.02%; mean difference [MD], 11.32%; 95% CI, −3.89% to 26.53%; p = 0.16) or for the Van2 group (56.12% ± 10.06%; MD, 7.46; 95% CI, −7.75 to 22.67; p = 0.40), with the numbers available. In addition, the scores for timing of bone apposition did not differ between the No Gel group (0.50 ± 0.55) compared with the Gel group (0.33 ± 0.52; MD, −0.17; 95% CI, −0.86 to 0.53; p = 0.78) or the Van2 group (0.83 ± 0.41; MD, 0.33; 95% CI, −0.36 to 1.03; p = 0.42). Furthermore, we detected no differences in the histopathology scores for inflammation in the No Gel group (2.33 ± 1.67) compared with the Gel group (3.17 ± 1.59; MD, 0.83; 95% CI, −0.59 to 2.26; p = 0.31) or to the Van2 group (2.5 ± 1.24; MD, 0.17; 95% CI, −1.26 to 1.59; p = 0.95). Moreover, no differences in total leukocyte count, erythrocyte sedimentation rate, and neutrophil, monocyte, eosinophil, basophil, and lymphocyte counts were present between the No Gel or Van2 groups compared with the Gel control group, with the numbers available. Conclusion: The hydrogel coated on titanium implants, unloaded or loaded with 2% vancomycin, had no effect on the volume or timing of bone apposition near the implant, and did not induce an inflammatory reaction in vivo, with the numbers available. Clinical relevance: Antibiotic-loaded hydrogel may prove to be a valuable option to protect orthopaedic implants from bacterial colonization. Future clinical safety studies will need to provide more evidence that this product does not impair bone formation near the implant and prove the safety of this product.
KW - Animals
KW - Bone-Implant Interface
KW - Hyaluronic Acid
KW - Hydrogel, Polyethylene Glycol Dimethacrylate
KW - Models, Animal
KW - Prostheses and Implants
KW - Rabbits
KW - Tibia
KW - Titanium
KW - Vancomycin
KW - Journal Article
UR - http://www.scopus.com/inward/record.url?scp=85015685355&partnerID=8YFLogxK
U2 - 10.1007/s11999-017-5310-0
DO - 10.1007/s11999-017-5310-0
M3 - Article
C2 - 28303535
AN - SCOPUS:85015685355
SN - 0009-921X
VL - 475
SP - 1911
EP - 1919
JO - Clinical Orthopaedics and Related Research
JF - Clinical Orthopaedics and Related Research
IS - 7
ER -