Host Proteome Correlates of Vaccine-Mediated Enhanced Disease in a Mouse Model of Respiratory Syncytial Virus Infection

A van Diepen, HK Brand, Leon de Waal, Maarten A Bijl, VL Jong, Thijs Kuiken, Geert van Amerongen, Henk-Jan van den Ham, MJ Eijkemans, Albert D M E Osterhaus, Peter W M Hermans, Arno C Andeweg

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants. Despite over 50 years of research, to date no safe and efficacious RSV vaccine has been licensed. Many experimental vaccination strategies failed to induce balanced T-helper (Th) responses and were associated with adverse effects such as hypersensitivity and immunopathology upon challenge. In this study, we explored the well-established recombinant vaccinia virus (rVV) RSV-F/RSV-G vaccination-challenge mouse model to study phenotypically distinct vaccine-mediated host immune responses at the proteome level. In this model, rVV-G priming and not rVV-F priming results in the induction of Th2 skewed host responses upon RSV challenge. Mass spectrometry-based spectral count comparisons enabled us to identify seven host proteins for which expression in lung tissue is associated with an aberrant Th2 skewed response characterized by the influx of eosinophils and neutrophils. These proteins are involved in processes related to the direct influx of eosinophils (eosinophil peroxidase [Epx]) and to chemotaxis and extravasation processes (Chil3 [chitinase-like-protein 3]) as well as to eosinophil and neutrophil homing signals to the lung (Itgam). In addition, the increased levels of Arg1 and Chil3 proteins point to a functional and regulatory role for alternatively activated macrophages and type 2 innate lymphoid cells in Th2 cytokine-driven RSV vaccine-mediated enhanced disease.
Original languageEnglish
Pages (from-to)5022-5031
JournalJournal of Virology
Volume89
Issue number9
DOIs
Publication statusPublished - May 2015

Fingerprint

Dive into the research topics of 'Host Proteome Correlates of Vaccine-Mediated Enhanced Disease in a Mouse Model of Respiratory Syncytial Virus Infection'. Together they form a unique fingerprint.

Cite this