TY - JOUR
T1 - Heritability of Cortisol Production and Metabolism Throughout Adolescence A Twin Study
AU - van Keulen, Britt J.
AU - Dolan, Conor V.
AU - Andrew, Ruth
AU - Walker, Brian R.
AU - Hulshoff Pol, Hilleke E.
AU - Boomsma, Dorret I.
AU - Rotteveel, Joost
AU - Finken, Martijn J.J.
N1 - Funding Information:
Financial Support: RA and BRW were supported by a British Heart Foundation Programme Grant and by a Wellcome Trust equipment grant. This work was supported by the Netherlands Organization for Scientific Research (NWO, 51.02.060, 668.772; NWO-MagW 480-04-004; NWO/ SPI 56-464-14192). DIB acknowledges KNAW Academy Professor Award (PAH/6635).
Publisher Copyright:
© 2019 Endocrine Society 2019.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - CONTEXT: Inter-individual differences in cortisol production and metabolism emerge with age and may be explained by genetic factors. OBJECTIVE: To estimate the relative contributions of genetic and environmental factors to inter-individual differences in cortisol production and metabolism throughout adolescence. DESIGN: Prospective follow-up study of twins. SETTING: Nationwide register. PARTICIPANTS: 218 mono- and dizygotic twins (N = 109 pairs) born between 1995 amd 1996, recruited from the Netherlands Twin Register. Cortisol metabolites were determined in 213, 169, and 160 urine samples at the ages of 9, 12, and 17, respectively. MAIN OUTCOME MEASURES: The total contribution of genetic factors (broad-sense heritability) and shared and unshared environmental influences to inter-individual differences in cortisol production and activities of 5α-reductase, 5β-reductase, and 11β-hydroxysteroid dehydrogenases and cytochrome P450 3A4. RESULTS: For cortisol production rate at the ages of 9, 12, and 17, broad-sense heritability was estimated as 42%, 30%, and 0%, respectively, and the remainder of the variance was explained by unshared environmental factors. For cortisol metabolism indices, the following heritability was observed: for the A-ring reductases (5α-and 5β-reductases), broad-sense heritability increased with age (to >50%), while for the other indices (renal 11β-HSD2, global 11β-HSD, and CYP3A4), the contribution of genetic factors was highest (68%, 18%, and 67%, respectively) at age 12. CONCLUSIONS: The contribution of genetic factors to inter-individual differences in cortisol production decreased between 12 and 17y, indicative of a predominant role of individual circumstances. For cortisol metabolism, distinct patterns of genetic and environmental influences were observed, with heritability that either increased with age or peaked at age 12y.
AB - CONTEXT: Inter-individual differences in cortisol production and metabolism emerge with age and may be explained by genetic factors. OBJECTIVE: To estimate the relative contributions of genetic and environmental factors to inter-individual differences in cortisol production and metabolism throughout adolescence. DESIGN: Prospective follow-up study of twins. SETTING: Nationwide register. PARTICIPANTS: 218 mono- and dizygotic twins (N = 109 pairs) born between 1995 amd 1996, recruited from the Netherlands Twin Register. Cortisol metabolites were determined in 213, 169, and 160 urine samples at the ages of 9, 12, and 17, respectively. MAIN OUTCOME MEASURES: The total contribution of genetic factors (broad-sense heritability) and shared and unshared environmental influences to inter-individual differences in cortisol production and activities of 5α-reductase, 5β-reductase, and 11β-hydroxysteroid dehydrogenases and cytochrome P450 3A4. RESULTS: For cortisol production rate at the ages of 9, 12, and 17, broad-sense heritability was estimated as 42%, 30%, and 0%, respectively, and the remainder of the variance was explained by unshared environmental factors. For cortisol metabolism indices, the following heritability was observed: for the A-ring reductases (5α-and 5β-reductases), broad-sense heritability increased with age (to >50%), while for the other indices (renal 11β-HSD2, global 11β-HSD, and CYP3A4), the contribution of genetic factors was highest (68%, 18%, and 67%, respectively) at age 12. CONCLUSIONS: The contribution of genetic factors to inter-individual differences in cortisol production decreased between 12 and 17y, indicative of a predominant role of individual circumstances. For cortisol metabolism, distinct patterns of genetic and environmental influences were observed, with heritability that either increased with age or peaked at age 12y.
UR - http://www.scopus.com/inward/record.url?scp=85078512440&partnerID=8YFLogxK
U2 - 10.1210/clinem/dgz016
DO - 10.1210/clinem/dgz016
M3 - Article
C2 - 31608377
AN - SCOPUS:85078512440
SN - 0021-972X
VL - 105
SP - 443
EP - 452
JO - The Journal of clinical endocrinology and metabolism
JF - The Journal of clinical endocrinology and metabolism
IS - 2
M1 - dgz016
ER -