TY - JOUR
T1 - Hepatocyte-specific SR-BI gene transfer corrects cardiac dysfunction in scarb1-deficient mice and improves pressure overload-induced cardiomyopathy
AU - Muthuramu, Ilayaraja
AU - Amin, Ruhul
AU - Aboumsallem, Joseph Pierre
AU - Mishra, Mudit
AU - Robinson, Emma Louise
AU - De Geest, Bart
N1 - Funding Information:
I. Muthuramu is a postdoctoral fellow of the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen. This work was supported by Onderzoekstoelagen grant OT/13/090 of the KU Leuven and by grant G0A3114N of the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen.
Publisher Copyright:
© 2018 American Heart Association, Inc.
PY - 2018
Y1 - 2018
N2 - Objective-We investigated the hypothesis that HDL (high-density lipoprotein) dysfunction in Scarb1-/- mice negatively affects cardiac function both in the absence and in the presence of pressure overload. Second, we evaluated whether normalization of HDL metabolism in Scarb1-/- mice by hepatocyte-specific SR-BI (scavenger receptor class B, type I) expression after E1E3E4-deleted adenoviral AdSR-BI (E1E3E4-deleted adenoviral vector expressing SR-BI protein in hepatocytes) transfer abrogates the effects of total body SR-BI deficiency on cardiac structure and function. Approach and Results-Transverse aortic constriction (TAC) or sham operation was performed at the age of 14 weeks, 2 weeks after saline injection or after gene transfer with AdSR-BI or with the control vector Adnull. Mortality rate in Scarb1-/- TAC mice was significantly increased compared with wild-type TAC mice during 8 weeks of follow-up (hazard ratio, 2.02; 95% CI, 1.14-3.61). Hepatocyte-specific SR-BI gene transfer performed 2 weeks before induction of pressure overload by TAC potently reduced mortality in Scarb1-/- mice (hazard ratio, 0.329; 95% CI, 0.180-0.600). Hepatocyte-specific SR-BI expression abrogated increased cardiac hypertrophy and lung congestion and counteracted increased myocardial apoptosis and interstitial and perivascular fibrosis in Scarb1-/- TAC mice. Scarb1-/- sham mice were, notwithstanding the absence of detectable structural heart disease, characterized by systolic and diastolic dysfunction and hypotension, which were completely counteracted by AdSR-BI transfer. Furthermore, AdSR-BI transfer abrogated increased end-diastolic pressure and diastolic dysfunction in Scarb1-/- TAC mice. Increased oxidative stress and reduced antioxidant defense systems in Scarb1-/- mice were rescued by AdSR-BI transfer. Conclusions-The detrimental effects of SR-BI deficiency on cardiac structure and function are nullified by hepatocytespecific SR-BI transfer, which restores HDL metabolism. Visual Overview-An online visual overview is available for this article.
AB - Objective-We investigated the hypothesis that HDL (high-density lipoprotein) dysfunction in Scarb1-/- mice negatively affects cardiac function both in the absence and in the presence of pressure overload. Second, we evaluated whether normalization of HDL metabolism in Scarb1-/- mice by hepatocyte-specific SR-BI (scavenger receptor class B, type I) expression after E1E3E4-deleted adenoviral AdSR-BI (E1E3E4-deleted adenoviral vector expressing SR-BI protein in hepatocytes) transfer abrogates the effects of total body SR-BI deficiency on cardiac structure and function. Approach and Results-Transverse aortic constriction (TAC) or sham operation was performed at the age of 14 weeks, 2 weeks after saline injection or after gene transfer with AdSR-BI or with the control vector Adnull. Mortality rate in Scarb1-/- TAC mice was significantly increased compared with wild-type TAC mice during 8 weeks of follow-up (hazard ratio, 2.02; 95% CI, 1.14-3.61). Hepatocyte-specific SR-BI gene transfer performed 2 weeks before induction of pressure overload by TAC potently reduced mortality in Scarb1-/- mice (hazard ratio, 0.329; 95% CI, 0.180-0.600). Hepatocyte-specific SR-BI expression abrogated increased cardiac hypertrophy and lung congestion and counteracted increased myocardial apoptosis and interstitial and perivascular fibrosis in Scarb1-/- TAC mice. Scarb1-/- sham mice were, notwithstanding the absence of detectable structural heart disease, characterized by systolic and diastolic dysfunction and hypotension, which were completely counteracted by AdSR-BI transfer. Furthermore, AdSR-BI transfer abrogated increased end-diastolic pressure and diastolic dysfunction in Scarb1-/- TAC mice. Increased oxidative stress and reduced antioxidant defense systems in Scarb1-/- mice were rescued by AdSR-BI transfer. Conclusions-The detrimental effects of SR-BI deficiency on cardiac structure and function are nullified by hepatocytespecific SR-BI transfer, which restores HDL metabolism. Visual Overview-An online visual overview is available for this article.
KW - Apoptosis
KW - Constriction
KW - Heart failure
KW - Hypotension
KW - Oxidative stress
UR - http://www.scopus.com/inward/record.url?scp=85053883184&partnerID=8YFLogxK
U2 - 10.1161/ATVBAHA.118.310946
DO - 10.1161/ATVBAHA.118.310946
M3 - Article
C2 - 29976771
AN - SCOPUS:85053883184
SN - 1079-5642
VL - 38
SP - 2028
EP - 2040
JO - Arteriosclerosis, Thrombosis, and Vascular Biology
JF - Arteriosclerosis, Thrombosis, and Vascular Biology
IS - 9
ER -