Abstract
Leukocyte chemotaxis is deemed instrumental in initiation and progression of atherosclerosis. It is mediated by G-protein-coupled receptors (e.g., CCR2 and CCR5), the activity of which is controlled by G-protein-coupled receptor kinases (GRKs). In this study, we analyzed the effect of hematopoietic deficiency of a potent regulator kinase of chemotaxis (GRK2) on atherogenesis. LDL receptor-deficient (LDLr(-/-)) mice with heterozygous hematopoietic GRK2 deficiency, generated by bone marrow transplantation (n=15), displayed a dramatic attenuation of plaque development, with 79% reduction in necrotic core and increased macrophage content. Circulating monocytes decreased and granulocytes increased in GRK2(+/-) chimeras, which could be attributed to diminished granulocyte colony-forming units in bone marrow. Collectively, these data pointed to myeloid cells as major mediators of the impaired atherogenic response in GRK2(+/-) chimeras. LDLr(-/-) mice with macrophage/granulocyte-specific GRK2 deficiency (LysM-Cre GRK2(flox/flox); n=8) failed to mimic the aforementioned phenotype, acquitting these cells as major responsible subsets for GRK2 deficiency-associated atheroprotection. To conclude, even partial hematopoietic GRK2 deficiency prevents atherosclerotic lesion progression beyond the fatty streak stage, identifying hematopoietic GRK2 as a potential target for intervention in atherosclerosis.
Original language | English |
---|---|
Pages (from-to) | 265-276 |
Number of pages | 12 |
Journal | FASEB Journal |
Volume | 27 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2013 |
Keywords
- Animals
- Apoptosis
- Atherosclerosis
- Female
- Flow Cytometry
- G-Protein-Coupled Receptor Kinase 2
- Mice
- Mice, Knockout
- Phagocytosis
- Receptors, LDL