GestaltMatcher Database - A global reference for facial phenotypic variability in rare human diseases

Hellen Lesmann, Alexander Hustinx, Shahida Moosa, Hannah Klinkhammer, Elaine Marchi, Pilar Caro, Ibrahim M Abdelrazek, Jean Tori Pantel, Merle Ten Hagen, Meow-Keong Thong, Rifhan Azwani Binti Mazlan, Sok Kun Tae, Tom Kamphans, Wolfgang Meiswinkel, Jing-Mei Li, Behnam Javanmardi, Alexej Knaus, Annette Uwineza, Cordula Knopp, Tinatin TkemaladzeMiriam Elbracht, Larissa Mattern, Rami Abou Jamra, Clara Velmans, Vincent Strehlow, Maureen Jacob, Angela Peron, Cristina Dias, Beatriz Carvalho Nunes, Thainá Vilella, Isabel Furquim Pinheiro, Chong Ae Kim, Maria Isabel Melaragno, Hannah Weiland, Sophia Kaptain, Karolina Chwiałkowska, Miroslaw Kwasniewski, Ramy Saad, Sarah Wiethoff, Himanshu Goel, Clara Tang, Anna Hau, Tahsin Stefan Barakat, Przemysław Panek, Amira Nabil, Julia Suh, Frederik Braun, Israel Gomy, Luisa Averdunk, Renske Oegema,

Research output: Working paperPreprintAcademic

Abstract

The most important factor that complicates the work of dysmorphologists is the significant phenotypic variability of the human face. Next-Generation Phenotyping (NGP) tools that assist clinicians with recognizing characteristic syndromic patterns are particularly challenged when confronted with patients from populations different from their training data. To that end, we systematically analyzed the impact of genetic ancestry on facial dysmorphism. For that purpose, we established the GestaltMatcher Database (GMDB) as a reference dataset for medical images of patients with rare genetic disorders from around the world. We collected 10,980 frontal facial images - more than a quarter previously unpublished - from 8,346 patients, representing 581 rare disorders. Although the predominant ancestry is still European (67%), data from underrepresented populations have been increased considerably via global collaborations (19% Asian and 7% African). This includes previously unpublished reports for more than 40% of the African patients. The NGP analysis on this diverse dataset revealed characteristic performance differences depending on the composition of training and test sets corresponding to genetic relatedness. For clinical use of NGP, incorporating non-European patients resulted in a profound enhancement of GestaltMatcher performance. The top-5 accuracy rate increased by +11.29%. Importantly, this improvement in delineating the correct disorder from a facial portrait was achieved without decreasing the performance on European patients. By design, GMDB complies with the FAIR principles by rendering the curated medical data findable, accessible, interoperable, and reusable. This means GMDB can also serve as data for training and benchmarking. In summary, our study on facial dysmorphism on a global sample revealed a considerable cross ancestral phenotypic variability confounding NGP that should be counteracted by international efforts for increasing data diversity. GMDB will serve as a vital reference database for clinicians and a transparent training set for advancing NGP technology.

Original languageEnglish
PublisherResearch Square
Number of pages51
DOIs
Publication statusPublished - 10 Jun 2024

Publication series

NameResearch square
ISSN (Print)2693-5015

Cite this