TY - JOUR
T1 - Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting
AU - Chauhan, Ganesh
AU - Adams, Hieab H H
AU - Satizabal, Claudia L
AU - Bis, Joshua C
AU - Teumer, Alexander
AU - Sargurupremraj, Muralidharan
AU - Hofer, Edith
AU - Trompet, Stella
AU - Hilal, Saima
AU - Smith, Albert Vernon
AU - Jian, Xueqiu
AU - Malik, Rainer
AU - Traylor, Matthew
AU - Pulit, Sara L
AU - Amouyel, Philippe
AU - Mazoyer, Bernard
AU - Zhu, Yi-Cheng
AU - Kaffashian, Sara
AU - Schilling, Sabrina
AU - Beecham, Gary W
AU - Montine, Thomas J
AU - Schellenberg, Gerard D
AU - Kjartansson, Olafur
AU - Guðnason, Vilmundur
AU - Knopman, David S
AU - Griswold, Michael E
AU - Windham, B Gwen
AU - Gottesman, Rebecca F
AU - Mosley, Thomas H
AU - Schmidt, Reinhold
AU - Saba, Yasaman
AU - Schmidt, Helena
AU - Takeuchi, Fumihiko
AU - Yamaguchi, Shuhei
AU - Nabika, Toru
AU - Kato, Norihiro
AU - Rajan, Kumar B
AU - Aggarwal, Neelum T
AU - De Jager, Philip L
AU - Evans, Denis A
AU - Psaty, Bruce M
AU - Rotter, Jerome I
AU - Rice, Kenneth
AU - Lopez, Oscar L
AU - Liao, Jiemin
AU - Uh, Hae-Won
AU - Geerlings, Mirjam I
AU - van der Graaf, Yolanda
AU - de Bakker, Paul I W
AU - Asselbergs, Folkert W
N1 - Funding Information:
Milan: Milano–Besta Stroke Register Collection and genotyping of the Milan cases within CEDIR were supported by the Italian Ministry of Health (grant nos.: RC 2007/LR6, RC 2008/LR6; RC 2009/LR8; RC 2010/LR8; GR-2011-02347041), FP6 LSHM-CT-2007-037273 for the PROCARDIS control samples. WTCCC2: Wellcome Trust Case-Control Consortium 2 (WTCCC2) was principally funded by the Wellcome Trust, as part of the Wellcome Trust Case Control Consortium 2 project (085475/B/08/Z and 085475/Z/08/Z and WT084724MA). The Stroke Association provided additional support for collection of some of the St George’s, London cases. The Oxford cases were collected as part of the Oxford Vascular Study, which is funded by the MRC, Stroke Association, Dunhill Medical Trust, National Institute of Health Research (NIHR), and the NIHR Biomedical Research Centre, Oxford. The Edinburgh Stroke Study was supported by the Wellcome Trust (clinician scientist award to C.L.M.S.) and the Binks Trust. Sample processing occurred in the Genetics Core Laboratory of the Wellcome Trust Clinical Research Facility, Western General Hospital, Edinburgh. Much of the neuroimaging occurred in the Scottish Funding Council Brain Imaging Research Centre (https://www.ed.ac.uk/clinical-sciences/edinburgh-imaging), Division of Clinical Neurosciences, University of Edinburgh, a core area of the Wellcome Trust Clinical Research Facility, and part of the SINAPSE (Scottish Imaging Network: A Platform for Scientific Excellence) collaboration (sinapse.ac.uk), funded by the Scottish Funding Council and the Chief Scientist Office. Collection of the Munich cases and data analysis was supported by the Vascular Dementia Research Foundation. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements no. 666881, SVDs@target (to M.D.) and no. 667375, CoSTREAM (to M.D.); the DFG as part of the Munich Cluster for Systems Neurology (EXC 1010 SyNergy) and the CRC 1123 (B3) (to M.D.); the Corona Foundation (to M.D.); the Fondation Leducq (Transatlantic Network of Excellence on the Pathogenesis of Small Vessel Disease of the Brain) (to M.D.); the e:Med program (e:Athe-roSysMed) (to M.D.) and the FP7/2007-2103 European Union project CVgenes@target (grant agreement no. Health-F2-2013-601456) (to M.D.). M.F. and A.H. acknowledge support from the BHF Centre of Research Excellence in Oxford and the Wellcome Trust core award (090532/Z/09/Z). VISP: The GWAS component of the Vitamin Intervention for Stroke Prevention (VISP) study was supported by the US National Human Genome Research Institute (NHGRI), grant U01 HG005160 (PI Michèle Sale and Bradford Worrall), as part of the Genomics and Randomized Trials Network (GARNET). Genotyping services were provided by the Johns Hopkins University Center for Inherited Disease Research (CIDR), which is fully funded through a federal contract from the NIH to Johns Hopkins University. Assistance with data cleaning was provided by the GARNET Coordinating Center (U01 HG005157; PI Bruce S. Weir). Study recruitment and collection of datasets for the VISP clinical trial were supported by an investigator-initiated research grant (R01 NS34447; PI James Toole) from the US Public Health Service, NINDS, Bethesda, MD. Control data obtained through the database of genotypes and phenotypes (dbGAP) maintained and supported by the United States National Center for Biotechnology Information, US National Library of Medicine. WHI: Funding support for WHI-GARNET was provided through the NHGRI GARNET (grant no. U01 HG005152). Assistance with phenotype harmonization and genotype cleaning, as well as with general study coordination, was provided by the GARNET Coordinating Center (U01 HG005157). Funding support for genotyping, which was performed at the Broad Institute of MIT and Harvard, was provided by the GEI (U01 HG004424). R.L. is a senior clinical investigator of FWO Flanders. F.W.A. is supported by a Dekker scholarship-Junior Staff Member 2014T001–Netherlands Heart Foundation and UCL Hospitals NIHR Biomedical Research Centre.
Publisher Copyright:
© 2019 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
PY - 2019/1/29
Y1 - 2019/1/29
N2 - OBJECTIVE: To explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts.METHODS: We performed meta-analyses of genome-wide association studies (GWAS) and examined associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n = 20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7 population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations with related phenotypes including ischemic stroke and pathologically defined BI.RESULTS: The mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci showed genome-wide significant association with BI: FBN2, p = 1.77 × 10-8; and LINC00539/ZDHHC20, p = 5.82 × 10-9. Both have been associated with blood pressure (BP)-related phenotypes, but did not replicate in the smaller follow-up sample or show associations with related phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits (p value for BI, p[BI] = 9.38 × 10-25; p[SSBI] = 5.23 × 10-14 for hypertension), smoking (p[BI] = 4.4 × 10-10; p[SSBI] = 1.2 × 10-4), diabetes (p[BI] = 1.7 × 10-8; p[SSBI] = 2.8 × 10-3), previous cardiovascular disease (p[BI] = 1.0 × 10-18; p[SSBI] = 2.3 × 10-7), stroke (p[BI] = 3.9 × 10-69; p[SSBI] = 3.2 × 10-24), and MRI-defined white matter hyperintensity burden (p[BI] = 1.43 × 10-157; p[SSBI] = 3.16 × 10-106), but not with body mass index or cholesterol. GRS of BP traits were associated with BI and SSBI (p ≤ 0.0022), without indication of directional pleiotropy.CONCLUSION: In this multiethnic GWAS meta-analysis, including over 20,000 population-based participants, we identified genetic risk loci for BI requiring validation once additional large datasets become available. High BP, including genetically determined, was the most significant modifiable, causal risk factor for BI.
AB - OBJECTIVE: To explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts.METHODS: We performed meta-analyses of genome-wide association studies (GWAS) and examined associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n = 20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7 population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations with related phenotypes including ischemic stroke and pathologically defined BI.RESULTS: The mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci showed genome-wide significant association with BI: FBN2, p = 1.77 × 10-8; and LINC00539/ZDHHC20, p = 5.82 × 10-9. Both have been associated with blood pressure (BP)-related phenotypes, but did not replicate in the smaller follow-up sample or show associations with related phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits (p value for BI, p[BI] = 9.38 × 10-25; p[SSBI] = 5.23 × 10-14 for hypertension), smoking (p[BI] = 4.4 × 10-10; p[SSBI] = 1.2 × 10-4), diabetes (p[BI] = 1.7 × 10-8; p[SSBI] = 2.8 × 10-3), previous cardiovascular disease (p[BI] = 1.0 × 10-18; p[SSBI] = 2.3 × 10-7), stroke (p[BI] = 3.9 × 10-69; p[SSBI] = 3.2 × 10-24), and MRI-defined white matter hyperintensity burden (p[BI] = 1.43 × 10-157; p[SSBI] = 3.16 × 10-106), but not with body mass index or cholesterol. GRS of BP traits were associated with BI and SSBI (p ≤ 0.0022), without indication of directional pleiotropy.CONCLUSION: In this multiethnic GWAS meta-analysis, including over 20,000 population-based participants, we identified genetic risk loci for BI requiring validation once additional large datasets become available. High BP, including genetically determined, was the most significant modifiable, causal risk factor for BI.
UR - http://www.scopus.com/inward/record.url?scp=85065551999&partnerID=8YFLogxK
U2 - 10.1212/WNL.0000000000006851
DO - 10.1212/WNL.0000000000006851
M3 - Article
C2 - 30651383
SN - 0028-3878
VL - 92
SP - E486-E503
JO - Neurology
JF - Neurology
IS - 5
ER -