TY - JOUR
T1 - Full-field strain measurement and fracture analysis of rat femora in compression test
AU - Amin Yavari, Saber
AU - van der Stok, Johan
AU - Weinans, Harrie
AU - Zadpoor, Amir Abbas
PY - 2013/4/26
Y1 - 2013/4/26
N2 - There is a growing interest in studying the fracture behavior of bones, primarily due to the increasing societal burden of osteoporotic fractures. In addition, bone is one of the most important biological materials whose fracture behavior is not yet well understood. This is partly due to the fact that bone is a complex hierarchical material, and exhibits heterogeneous, anisotropic, and viscoelastic mechanical behavior. Understanding the fracture behavior of such a complex material requires application of a full-field strain measurement technique. Digital image correlation (DIC) is a relatively new full-field strain measurement technique that can be used for measurement of 3D surface strains during mechanical testing of different types of bones. In this study, we use the DIC technique to measure the surface strains during compression testing of two groups of rat femora. The first group of femora was harvested from young animals (12 weeks), while the second group was harvested from more mature animals (26 weeks). The surface strains are measured both in the linear range and close to the fracture. Using the measured data, we assess two strain-based fracture prediction criteria, namely equivalent strain fracture criterion and fracture limit diagram, to determine whether they can consistently predict the onset of fracture. The maximum load is measured to be 296±22. N (mean±SD) for young animals and 670±123. N for mature animals. It is shown that fracture in the vast majority of cases occurs in the area of maximum tensile strain. The equivalent strain fracture criterion predicts that the fracture occurs when the equivalent strain reaches 1.04±0.02% (average±SD) for young animals and 1.39±0.24% for mature animals. The fracture limit diagram predicts that the fracture occurs once the sum of major and minor principal surface strains reaches 0.63±0.23% for young animals and -0.63±0.30% for mature animals. Based on these numbers and consistency of the criteria with the strain values recorded at the fracture locations, it is concluded that the equivalent strain fracture criterion tends to be more consistent among the tested specimens.
AB - There is a growing interest in studying the fracture behavior of bones, primarily due to the increasing societal burden of osteoporotic fractures. In addition, bone is one of the most important biological materials whose fracture behavior is not yet well understood. This is partly due to the fact that bone is a complex hierarchical material, and exhibits heterogeneous, anisotropic, and viscoelastic mechanical behavior. Understanding the fracture behavior of such a complex material requires application of a full-field strain measurement technique. Digital image correlation (DIC) is a relatively new full-field strain measurement technique that can be used for measurement of 3D surface strains during mechanical testing of different types of bones. In this study, we use the DIC technique to measure the surface strains during compression testing of two groups of rat femora. The first group of femora was harvested from young animals (12 weeks), while the second group was harvested from more mature animals (26 weeks). The surface strains are measured both in the linear range and close to the fracture. Using the measured data, we assess two strain-based fracture prediction criteria, namely equivalent strain fracture criterion and fracture limit diagram, to determine whether they can consistently predict the onset of fracture. The maximum load is measured to be 296±22. N (mean±SD) for young animals and 670±123. N for mature animals. It is shown that fracture in the vast majority of cases occurs in the area of maximum tensile strain. The equivalent strain fracture criterion predicts that the fracture occurs when the equivalent strain reaches 1.04±0.02% (average±SD) for young animals and 1.39±0.24% for mature animals. The fracture limit diagram predicts that the fracture occurs once the sum of major and minor principal surface strains reaches 0.63±0.23% for young animals and -0.63±0.30% for mature animals. Based on these numbers and consistency of the criteria with the strain values recorded at the fracture locations, it is concluded that the equivalent strain fracture criterion tends to be more consistent among the tested specimens.
KW - Bone
KW - Digital image correlation
KW - Fracture
KW - Full-field strain measurement
KW - Rat femur
UR - http://www.scopus.com/inward/record.url?scp=84876303035&partnerID=8YFLogxK
U2 - 10.1016/j.jbiomech.2013.02.007
DO - 10.1016/j.jbiomech.2013.02.007
M3 - Article
C2 - 23510907
AN - SCOPUS:84876303035
SN - 0021-9290
VL - 46
SP - 1282
EP - 1292
JO - Journal of Biomechanics
JF - Journal of Biomechanics
IS - 7
ER -