FAN1-mediated translesion synthesis and POLQ/HELQ-mediated end joining generate interstrand crosslink-induced mutations

Jip Verschuren, Robin van Schendel, Ivo van Bostelen, Alex E.E. Verkennis, Puck Knipscheer, Marcel Tijsterman*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

To counteract the damaging effects of DNA interstrand crosslinks (ICLs), cells have evolved various specialized ICL repair pathways. However, how ICL repair impacts genetic integrity remains incompletely understood. Here, we determined the mutagenic consequences of psoralen ICL repair in the animal model C. elegans and identify two mutagenic repair mechanisms: (i) translesion synthesis through POLH and REV1/3-mediated bypass, leading to single nucleotide polymorphisms (SNVs), and (ii) end joining via POLQ or HELQ action resulting in deletions. While we found no role for the Fanconi anemia genes FANCD2 and FANCI, disruption of TRAIP, which triggers unloading of the CMG helicase at sites of blocked replication, led to a strikingly altered repair profile, suggesting a role for DNA replication in the etiology of ICL-induced deletions. TRAIP deficiency did not affect SNV formation; instead, we found these SNVs to depend on the functionality of the Fanconi anemia-associated nuclease FAN1.

Original languageEnglish
Article number2495
JournalNature Communications
Volume16
Issue number1
DOIs
Publication statusPublished - 13 Mar 2025
Externally publishedYes

Fingerprint

Dive into the research topics of 'FAN1-mediated translesion synthesis and POLQ/HELQ-mediated end joining generate interstrand crosslink-induced mutations'. Together they form a unique fingerprint.

Cite this