TY - JOUR
T1 - Extracellular vesicle heterogeneity
T2 - Subpopulations, isolation techniques, and diverse functions in cancer progression
AU - Willms, Eduard
AU - Cabañas, Carlos
AU - Mäger, Imre
AU - Wood, Matthew J.A.
AU - Vader, Pieter
N1 - Funding Information:
EW is supported by a BBSRC iCASE Training Grant (grant number 1530868). CC is supported by grant SAF2016-77096-R from Ministerio Español de Economía y Competitividad (MINECO). IM is supported by European Union's Horizon 2020 research and innovation programme under grant agreement No. 721058 (the B-SMART Consortium) and by Estonian Research Council Personal Research Grant PUT618. PV is supported by a VENI Fellowship from the Netherlands Organisation for Scientific Research (NWO).
Publisher Copyright:
© 2018 Willms, Cabañas, Mäger, Wood and Vader.
PY - 2018/4/30
Y1 - 2018/4/30
N2 - Cells release membrane enclosed nano-sized vesicles termed extracellular vesicles (EVs) that function as mediators of intercellular communication by transferring biological information between cells. Tumor-derived EVs have emerged as important mediators in cancer development and progression, mainly through transfer of their bioactive content which can include oncoproteins, oncogenes, chemokine receptors, as well as soluble factors, transcripts of proteins and miRNAs involved in angiogenesis or inflammation. This transfer has been shown to influence the metastatic behavior of primary tumors. Moreover, tumor-derived EVs have been shown to influence distant cellular niches, establishing favorable microenvironments that support growth of disseminated cancer cells upon their arrival at these pre-metastatic niches. It is generally accepted that cells release a number of major EV populations with distinct biophysical properties and biological functions. Exosomes, microvesicles, and apoptotic bodies are EV populations most widely studied and characterized. They are discriminated based primarily on their intracellular origin. However, increasing evidence suggests that even within these EV populations various subpopulations may exist. This heterogeneity introduces an extra level of complexity in the study of EV biology and function. For example, EV subpopulations could have unique roles in the intricate biological processes underlying cancer biology. Here, we discuss current knowledge regarding the role of subpopulations of EVs in cancer development and progression and highlight the relevance of EV heterogeneity. The position of tetraspanins and integrins therein will be highlighted. Since addressing EV heterogeneity has become essential for the EV field, current and novel techniques for isolating EV subpopulations will also be discussed. Further dissection of EV heterogeneity will advance our understanding of the critical roles of EVs in health and disease.
AB - Cells release membrane enclosed nano-sized vesicles termed extracellular vesicles (EVs) that function as mediators of intercellular communication by transferring biological information between cells. Tumor-derived EVs have emerged as important mediators in cancer development and progression, mainly through transfer of their bioactive content which can include oncoproteins, oncogenes, chemokine receptors, as well as soluble factors, transcripts of proteins and miRNAs involved in angiogenesis or inflammation. This transfer has been shown to influence the metastatic behavior of primary tumors. Moreover, tumor-derived EVs have been shown to influence distant cellular niches, establishing favorable microenvironments that support growth of disseminated cancer cells upon their arrival at these pre-metastatic niches. It is generally accepted that cells release a number of major EV populations with distinct biophysical properties and biological functions. Exosomes, microvesicles, and apoptotic bodies are EV populations most widely studied and characterized. They are discriminated based primarily on their intracellular origin. However, increasing evidence suggests that even within these EV populations various subpopulations may exist. This heterogeneity introduces an extra level of complexity in the study of EV biology and function. For example, EV subpopulations could have unique roles in the intricate biological processes underlying cancer biology. Here, we discuss current knowledge regarding the role of subpopulations of EVs in cancer development and progression and highlight the relevance of EV heterogeneity. The position of tetraspanins and integrins therein will be highlighted. Since addressing EV heterogeneity has become essential for the EV field, current and novel techniques for isolating EV subpopulations will also be discussed. Further dissection of EV heterogeneity will advance our understanding of the critical roles of EVs in health and disease.
KW - Cancer
KW - Exosomes
KW - Extracellular vesicles
KW - Heterogeneity
KW - Microvesicles
KW - Subpopulations
UR - http://www.scopus.com/inward/record.url?scp=85046641052&partnerID=8YFLogxK
U2 - 10.3389/fimmu.2018.00738
DO - 10.3389/fimmu.2018.00738
M3 - Review article
AN - SCOPUS:85046641052
SN - 1664-3224
VL - 9
JO - Frontiers in Immunology
JF - Frontiers in Immunology
IS - APR
M1 - 738
ER -