Research output per year
Research output per year
R.C. Lai, F. Arslan, M.M. Lee, N.S. Sze, A. Choo, T.S. Chen, M. Salto-Tellez, L. Timmers, C.N. Lee, R.M. El Oakley, G. Pasterkamp, D.P.V. de Kleijn, S.K. Lim
Research output: Contribution to journal › Article › Academic › peer-review
Human ESC-derived mesenchymal stem cell (MSC)-conditioned medium (CM) was previously shown to mediate cardioprotection during myocardial ischemia/reperfusion injury through large complexes of 50-100 nm. Here we show that these MSCs secreted 50- to 100-nm particles. These particles could be visualized by electron microscopy and were shown to be phospholipid vesicles consisting of cholesterol, sphingomyelin, and phosphatidylcholine. They contained coimmunoprecipitating exosome-associated proteins, e.g., CD81, CD9, and Alix. These particles were purified as a homogeneous population of particles with a hydrodynamic radius of 55-65 nm by size-exclusion fractionation on a HPLC. Together these observations indicated that these particles are exosomes. These purified exosomes reduced infarct size in a mouse model of myocardial ischemia/reperfusion injury. Therefore, MSC mediated its cardioprotective paracrine effect by secreting exosomes. This novel role of exosomes highlights a new perspective into intercellular mediation of tissue injury and repair, and engenders novel approaches to the development of biologics for tissue repair.
Original language | English |
---|---|
Pages (from-to) | 214-222 |
Number of pages | 9 |
Journal | Stem Cell Research |
Volume | 4 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2010 |
Research output: Contribution to journal › Comment/Letter to the editor › Academic › peer-review