TY - JOUR
T1 - Exogenous pulmonary surfactant as a drug delivering agent
T2 - Influence of antibiotics on surfactant activity
AU - Van't Veen, Annemarie
AU - Gommers, Diederik
AU - Mouton, Johan W.
AU - Kluytmans, Jan A.J.W.
AU - Krijt, Erik Jan
AU - Lachmann, Burkhard
PY - 1996
Y1 - 1996
N2 - 1. It has been proposed to use exogenous pulmonary surfactant as a drug delivery system for antibiotics to the alveolar compartment of the lung. Little, however, is known about interactions between pulmonary surfactant and antimicrobial agents. This study investigated the activity of a bovine pulmonary surfactant after mixture with amphotericin B, amoxicillin, ceftazidime, pentamidine or tobramycin. 2. Surfactant (1 mg ml-1 in vitro and 40 mg ml-1 in vivo) was mixed with 0.375 mg ml-1 amphotericin B, 50 mg ml-1 amoxicillin, 37.5 mg ml-1 ceftazidime, 1 mg ml-1 pentamidine and 2.5 mg ml-1 tobramycin. Minimal surface tension of 50 μl of the mixtures was measured in vitro by use of the Wilhelmy balance. In vivo surfactant activity was evaluated by its capacity to restore gas exchange in an established rat model for surfactant deficiency. 3. Surfactant deficiency was induced in ventilated rats by repeated lavage of the lung with warm saline until PaO2 dropped below 80 cmH2O with 100% inspired oxygen at standard ventilation settings. Subsequently an antibiotic-surfactant mixture, saline, air, or surfactant alone was instilled intratracheally (4 ml kg-1 volume, n = 6 per treatment) and blood gas values were measured 5, 30, 60, 90 and 120 min after instillation. 4. The results showed that minimal surface tensions of the mixtures were comparable to that of surfactant alone. In vivo PaO2 levels in the animals receiving ceftazidime-surfactant or pentamidine-surfactant were unchanged when compared to the surfactant group. PaO2 levels in animals receiving amphotericin B-surfactant, amoxicillin-surfactant or tobramycin-surfactant were significantly decreased compared to the surfactant group. For tobramycin it was further found that PaO2 levels were not affected when 0.2 M NaHCO3 (pH = 8.3) buffer was used for suspending surfactant instead of saline. 5. It is concluded that some antibiotics affect the in vivo activity of a bovine pulmonary surfactant. Therefore, before using surfactant-antibiotic mixtures in clinical trials, interactions between the two agents should be carefully evaluated.
AB - 1. It has been proposed to use exogenous pulmonary surfactant as a drug delivery system for antibiotics to the alveolar compartment of the lung. Little, however, is known about interactions between pulmonary surfactant and antimicrobial agents. This study investigated the activity of a bovine pulmonary surfactant after mixture with amphotericin B, amoxicillin, ceftazidime, pentamidine or tobramycin. 2. Surfactant (1 mg ml-1 in vitro and 40 mg ml-1 in vivo) was mixed with 0.375 mg ml-1 amphotericin B, 50 mg ml-1 amoxicillin, 37.5 mg ml-1 ceftazidime, 1 mg ml-1 pentamidine and 2.5 mg ml-1 tobramycin. Minimal surface tension of 50 μl of the mixtures was measured in vitro by use of the Wilhelmy balance. In vivo surfactant activity was evaluated by its capacity to restore gas exchange in an established rat model for surfactant deficiency. 3. Surfactant deficiency was induced in ventilated rats by repeated lavage of the lung with warm saline until PaO2 dropped below 80 cmH2O with 100% inspired oxygen at standard ventilation settings. Subsequently an antibiotic-surfactant mixture, saline, air, or surfactant alone was instilled intratracheally (4 ml kg-1 volume, n = 6 per treatment) and blood gas values were measured 5, 30, 60, 90 and 120 min after instillation. 4. The results showed that minimal surface tensions of the mixtures were comparable to that of surfactant alone. In vivo PaO2 levels in the animals receiving ceftazidime-surfactant or pentamidine-surfactant were unchanged when compared to the surfactant group. PaO2 levels in animals receiving amphotericin B-surfactant, amoxicillin-surfactant or tobramycin-surfactant were significantly decreased compared to the surfactant group. For tobramycin it was further found that PaO2 levels were not affected when 0.2 M NaHCO3 (pH = 8.3) buffer was used for suspending surfactant instead of saline. 5. It is concluded that some antibiotics affect the in vivo activity of a bovine pulmonary surfactant. Therefore, before using surfactant-antibiotic mixtures in clinical trials, interactions between the two agents should be carefully evaluated.
KW - Antibiotics
KW - Antimicrobial agents
KW - Drug delivery
KW - Lung lavage model
KW - Pneumonia
KW - Pulmonary surfactant
KW - Surfactant function
UR - http://www.scopus.com/inward/record.url?scp=8944233868&partnerID=8YFLogxK
U2 - 10.1111/j.1476-5381.1996.tb15442.x
DO - 10.1111/j.1476-5381.1996.tb15442.x
M3 - Article
C2 - 8762082
AN - SCOPUS:8944233868
SN - 0007-1188
VL - 118
SP - 593
EP - 598
JO - British Journal of Pharmacology
JF - British Journal of Pharmacology
IS - 3
ER -