TY - JOUR
T1 - Evaluation Metrics for Augmented Reality in Neurosurgical Preoperative Planning, Surgical Navigation, and Surgical Treatment Guidance
T2 - A Systematic Review
AU - Kos, Tessa M
AU - Colombo, Elisa
AU - Bartels, L Wilbert
AU - Robe, Pierre A
AU - van Doormaal, Tristan P C
N1 - Publisher Copyright:
© 2024 Lippincott Williams and Wilkins. All rights reserved.
PY - 2024/5
Y1 - 2024/5
N2 - BACKGROUND AND OBJECTIVE: Recent years have shown an advancement in the development of augmented reality (AR) technologies for preoperative visualization, surgical navigation, and intraoperative guidance for neurosurgery. However, proving added value for AR in clinical practice is challenging, partly because of a lack of standardized evaluation metrics. We performed a systematic review to provide an overview of the reported evaluation metrics for AR technologies in neurosurgical practice and to establish a foundation for assessment and comparison of such technologies.METHODS: PubMed, Embase, and Cochrane were searched systematically for publications on assessment of AR for cranial neurosurgery on September 22, 2022. The findings were reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.RESULTS: The systematic search yielded 830 publications; 114 were screened full text, and 80 were included for analysis. Among the included studies, 5% dealt with preoperative visualization using AR, with user perception as the most frequently reported metric. The majority (75%) researched AR technology for surgical navigation, with registration accuracy, clinical outcome, and time measurements as the most frequently reported metrics. In addition, 20% studied the use of AR for intraoperative guidance, with registration accuracy, task outcome, and user perception as the most frequently reported metrics.CONCLUSION: For quality benchmarking of AR technologies in neurosurgery, evaluation metrics should be specific to the risk profile and clinical objectives of the technology. A key focus should be on using validated questionnaires to assess user perception; ensuring clear and unambiguous reporting of registration accuracy, precision, robustness, and system stability; and accurately measuring task performance in clinical studies. We provided an overview suggesting which evaluation metrics to use per AR application and innovation phase, aiming to improve the assessment of added value of AR for neurosurgical practice and to facilitate the integration in the clinical workflow.
AB - BACKGROUND AND OBJECTIVE: Recent years have shown an advancement in the development of augmented reality (AR) technologies for preoperative visualization, surgical navigation, and intraoperative guidance for neurosurgery. However, proving added value for AR in clinical practice is challenging, partly because of a lack of standardized evaluation metrics. We performed a systematic review to provide an overview of the reported evaluation metrics for AR technologies in neurosurgical practice and to establish a foundation for assessment and comparison of such technologies.METHODS: PubMed, Embase, and Cochrane were searched systematically for publications on assessment of AR for cranial neurosurgery on September 22, 2022. The findings were reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.RESULTS: The systematic search yielded 830 publications; 114 were screened full text, and 80 were included for analysis. Among the included studies, 5% dealt with preoperative visualization using AR, with user perception as the most frequently reported metric. The majority (75%) researched AR technology for surgical navigation, with registration accuracy, clinical outcome, and time measurements as the most frequently reported metrics. In addition, 20% studied the use of AR for intraoperative guidance, with registration accuracy, task outcome, and user perception as the most frequently reported metrics.CONCLUSION: For quality benchmarking of AR technologies in neurosurgery, evaluation metrics should be specific to the risk profile and clinical objectives of the technology. A key focus should be on using validated questionnaires to assess user perception; ensuring clear and unambiguous reporting of registration accuracy, precision, robustness, and system stability; and accurately measuring task performance in clinical studies. We provided an overview suggesting which evaluation metrics to use per AR application and innovation phase, aiming to improve the assessment of added value of AR for neurosurgical practice and to facilitate the integration in the clinical workflow.
KW - 3D visualization
KW - Augmented reality
KW - Evaluation metrics
KW - Mixed reality
KW - Neurosurgery
UR - http://www.scopus.com/inward/record.url?scp=85190875099&partnerID=8YFLogxK
U2 - 10.1227/ons.0000000000001009
DO - 10.1227/ons.0000000000001009
M3 - Review article
C2 - 38146941
SN - 2332-4252
VL - 26
SP - 491
EP - 501
JO - Operative Neurosurgery
JF - Operative Neurosurgery
IS - 5
ER -