Abstract
BACKGROUND AND PURPOSE: To evaluate the dosimetric sparing and robustness against inter-fraction anatomical changes between photon and proton dose distributions for children with abdominal tumors.
MATERIAL AND METHODS: Volumetric modulated arc therapy (VMAT) and intensity-modulated pencil beam scanning (PBS) proton dose distributions were calculated for 20 abdominal pediatric cases (average 3, range 1-8 years). VMAT plans were based on a full-arc while PBS plans on 2-3 posterior-oblique irradiation fields. Plans were robustly optimized on a patient-specific internal target volume (ITV) using a uniform 5 mm set-up uncertainty. Additionally, for the PBS plans a ± 3% proton range uncertainty was accounted for. Fractional dose re-calculations were performed using the planning computed tomography (CT) deformably registered to the daily cone-beam CT (CBCT) images. Fractional doses were accumulated rigidly. Planned and CBCT accumulated VMAT and PBS dose distributions were compared using dose-volume histogram (DVH) parameters.
RESULTS: Significant better sparing of the organs at risk with a maximum reduction in the mean dose of 40% was achieved with PBS. Mean ITV DVH parameters differences between planned and CBCT accumulated dose distributions were smaller than 0.5% for both VMAT and PBS. However, the ITV coverage (V95% > 99%) was not reached for one patient for the accumulated VMAT dose distribution.
CONCLUSIONS: For pediatric patients with abdominal tumors, improved dosimetric sparing was obtained with PBS compared to VMAT. In addition, PBS delivered by posterior-oblique irradiation fields demonstrated to be robust against anatomical inter-fraction changes. Compared to PBS, daily anatomical changes proved to affect the target coverage of VMAT dose distributions to a higher extent.
Original language | English |
---|---|
Pages (from-to) | 158-165 |
Number of pages | 8 |
Journal | Radiotherapy & Oncology |
Volume | 138 |
DOIs | |
Publication status | Published - Sept 2019 |
Keywords
- Pediatric IGRT
- Pediatric abdominal tumors
- Robust pencil beam scanning
- Proton therapy
- VMAT
- Inter-fraction anatomical changes