TY - JOUR
T1 - Enhancing Delivery Efficiency on the Magnetic Resonance-Linac
T2 - A Comprehensive Evaluation of Prostate Stereotactic Body Radiation Therapy Using Volumetric Modulated Arc Therapy
AU - Snyder, Jeffrey E
AU - Fast, Martin F
AU - Uijtewaal, Prescilla
AU - Borman, Pim T S
AU - Woodhead, Peter
AU - St-Aubin, Joël
AU - Smith, Blake
AU - Shepard, Andrew
AU - Raaymakers, Bas W
AU - Hyer, Daniel E
N1 - Publisher Copyright:
© 2024 Elsevier Inc.
PY - 2024/10/25
Y1 - 2024/10/25
N2 - Purpose: Long treatment sessions are a limitation within magnetic resonance imaging guided adaptive radiation therapy (MRIgART). This work aims for significantly enhancing the delivery efficiency on the magnetic resonance linear accelerator (MR-linac) by introducing dedicated optimization and delivery techniques for volumetric modulated arc therapy (VMAT). VMAT plan and delivery quality during MRIgART is compared with step-and-shoot intensity-modulated radiation therapy (IMRT) for prostate stereotactic body radiation therapy. Methods and Materials: Ten patients with prostate cancer previously treated on a 1.5T MR-linac were retrospectively replanned to 36.25 Gy in 5 fractions using step-and-shoot IMRT and the clinical Hyperion optimizer within Monaco (Hyp-IMRT), the same optimizer with a VMAT technique (Hyp-VMAT), and a research-based optimizer called optimal fluence levels and pseudo gradient descent with VMAT (OFL+PGD-VMAT). The plans were then adapted onto each daily magnetic resonance imaging data set using 2 different optimization strategies to evaluate the adapt-to-position workflow: “optimize weights” (IMRT-Weights and VMAT-Weights) and “optimize shapes” (IMRT-Shapes and VMAT-Shapes). Treatment efficiency was evaluated by measuring optimization time, delivery time, and total time (optimization+delivery). Plan quality was assessed by evaluating organ at risk sparing. Ten patient plans were measured using a modified linac control system to assess delivery accuracy via a gamma analysis (2%/2 mm). Delivery efficiency was calculated as average dose rate divided by maximum dose rate. Results: For Hyp-VMAT and OFL+PGD-VMAT, the total time was reduced by 124 ± 140 seconds (P = .020) and 459 ± 110 seconds (P < .001), respectively, as compared with the clinical Hyp-IMRT group. Speed enhancements were also measured for adapt-to-position with reductions in total time of 404 ± 55 (P < .001) for VMAT-Weights as compared with the clinical IMRT-Shapes group. Bladder and rectum dosimetric volume histogram (DVH) points were within 1.3% or 0.8 cc for each group. All VMAT plans had gamma passing rates greater than 96%. The delivery efficiency of VMAT plans was 89.7 ± 2.7 % compared with 50.0 ± 2.2 % for clinical IMRT. Conclusions: Incorporating VMAT into MRIgART will significantly reduce treatment session times while maintaining equivalent plan quality.
AB - Purpose: Long treatment sessions are a limitation within magnetic resonance imaging guided adaptive radiation therapy (MRIgART). This work aims for significantly enhancing the delivery efficiency on the magnetic resonance linear accelerator (MR-linac) by introducing dedicated optimization and delivery techniques for volumetric modulated arc therapy (VMAT). VMAT plan and delivery quality during MRIgART is compared with step-and-shoot intensity-modulated radiation therapy (IMRT) for prostate stereotactic body radiation therapy. Methods and Materials: Ten patients with prostate cancer previously treated on a 1.5T MR-linac were retrospectively replanned to 36.25 Gy in 5 fractions using step-and-shoot IMRT and the clinical Hyperion optimizer within Monaco (Hyp-IMRT), the same optimizer with a VMAT technique (Hyp-VMAT), and a research-based optimizer called optimal fluence levels and pseudo gradient descent with VMAT (OFL+PGD-VMAT). The plans were then adapted onto each daily magnetic resonance imaging data set using 2 different optimization strategies to evaluate the adapt-to-position workflow: “optimize weights” (IMRT-Weights and VMAT-Weights) and “optimize shapes” (IMRT-Shapes and VMAT-Shapes). Treatment efficiency was evaluated by measuring optimization time, delivery time, and total time (optimization+delivery). Plan quality was assessed by evaluating organ at risk sparing. Ten patient plans were measured using a modified linac control system to assess delivery accuracy via a gamma analysis (2%/2 mm). Delivery efficiency was calculated as average dose rate divided by maximum dose rate. Results: For Hyp-VMAT and OFL+PGD-VMAT, the total time was reduced by 124 ± 140 seconds (P = .020) and 459 ± 110 seconds (P < .001), respectively, as compared with the clinical Hyp-IMRT group. Speed enhancements were also measured for adapt-to-position with reductions in total time of 404 ± 55 (P < .001) for VMAT-Weights as compared with the clinical IMRT-Shapes group. Bladder and rectum dosimetric volume histogram (DVH) points were within 1.3% or 0.8 cc for each group. All VMAT plans had gamma passing rates greater than 96%. The delivery efficiency of VMAT plans was 89.7 ± 2.7 % compared with 50.0 ± 2.2 % for clinical IMRT. Conclusions: Incorporating VMAT into MRIgART will significantly reduce treatment session times while maintaining equivalent plan quality.
UR - http://www.scopus.com/inward/record.url?scp=85211026111&partnerID=8YFLogxK
U2 - 10.1016/j.ijrobp.2024.10.028
DO - 10.1016/j.ijrobp.2024.10.028
M3 - Article
C2 - 39490905
SN - 0360-3016
VL - 122
SP - 976
EP - 985
JO - International journal of radiation oncology, biology, physics
JF - International journal of radiation oncology, biology, physics
IS - 4
ER -