TY - JOUR
T1 - Electrocardiographic temporo-spatial assessment of depolarization and repolarization changes after epicardial arrhythmogenic substrate ablation in Brugada syndrome
AU - Locati, Emanuela T.
AU - Van Dam, Peter M.
AU - Ciconte, Giuseppe
AU - Heilbron, Francesca
AU - Boonstra, Machteld
AU - Vicedomini, Gabriele
AU - Micaglio, Emanuele
AU - Ćalović, Žarko
AU - Anastasia, Luigi
AU - Santinelli, Vincenzo
AU - Pappone, Carlo
N1 - Publisher Copyright:
© The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology.
PY - 2023/12
Y1 - 2023/12
N2 - Aims In Brugada syndrome (BrS), with spontaneous or ajmaline-induced coved ST elevation, epicardial electro-anatomic potential duration maps (epi-PDMs) were detected on a right ventricle (RV) outflow tract (RVOT), an arrhythmogenic substrate area (AS area), abolished by epicardial-radiofrequency ablation (EPI-AS-RFA). Novel CineECG, projecting 12-lead electrocardiogram (ECG) waveforms on a 3D heart model, previously localized depolarization forces in RV/RVOT in BrS patients. We evaluate 12-lead ECG and CineECG depolarization/repolarization changes in spontaneous type-1 BrS patients before/after EPI-AS-RFA, compared with normal controls. Methods and results In 30 high-risk BrS patients (93% males, age 37 + 9 years), 12-lead ECGs and epi-PDMs were obtained at baseline, early after EPI-AS-RFA, and late follow-up (FU) (2.7–16.1 months). CineECG estimates temporo-spatial localization during depolarization (Early-QRS and Terminal-QRS) and repolarization (ST-Tpeak, Tpeak-Tend). Differences within BrS patients (baseline vs. early after EPI-AS-RFA vs. late FU) were analysed by Wilcoxon signed-rank test, while differences between BrS patients and 60 age–sex-matched normal controls were analysed by the Mann–Whitney test. In BrS patients, baseline QRS and QTc durations were longer and normalized after EPI-AS-ATC (151 ± 15 vs. 102 ± 13 ms, P < 0.001; 454 ± 40 vs. 421 ± 27 ms, P < 0.000). Baseline QRS amplitude was lower and increased at late FU (0.63 ± 0.26 vs. 0.84 ± 13 ms, P < 0.000), while Terminal-QRS amplitude decreased (0.24 ± 0.07 vs. 0.08 ± 0.03 ms, P < 0.000). At baseline, CineECG depolarization/repolarization wavefront prevalently localized in RV/RVOT (Terminal-QRS, 57%; ST-Tpeak, 100%; and Tpeak-Tend, 61%), congruent with the AS area on epi-PDM. Early after EPI-AS-RFA, RV/RVOT localization during depolarization disappeared, as Terminal-QRS prevalently localized in the left ventricle (LV, 76%), while repolarization still localized on RV/RVOT [ST-Tpeak (44%) and Tpeak-Tend (98%)]. At late FU, depolarization/ repolarization forces prevalently localized in the LV (Terminal-QRS, 94%; ST-Tpeak, 63%; Tpeak-Tend, 86%), like normal controls. Conclusion CineECG and 12-lead ECG showed a complex temporo-spatial perturbation of both depolarization and repolarization in BrS patients, prevalently localized in RV/RVOT, progressively normalizing after epicardial ablation.
AB - Aims In Brugada syndrome (BrS), with spontaneous or ajmaline-induced coved ST elevation, epicardial electro-anatomic potential duration maps (epi-PDMs) were detected on a right ventricle (RV) outflow tract (RVOT), an arrhythmogenic substrate area (AS area), abolished by epicardial-radiofrequency ablation (EPI-AS-RFA). Novel CineECG, projecting 12-lead electrocardiogram (ECG) waveforms on a 3D heart model, previously localized depolarization forces in RV/RVOT in BrS patients. We evaluate 12-lead ECG and CineECG depolarization/repolarization changes in spontaneous type-1 BrS patients before/after EPI-AS-RFA, compared with normal controls. Methods and results In 30 high-risk BrS patients (93% males, age 37 + 9 years), 12-lead ECGs and epi-PDMs were obtained at baseline, early after EPI-AS-RFA, and late follow-up (FU) (2.7–16.1 months). CineECG estimates temporo-spatial localization during depolarization (Early-QRS and Terminal-QRS) and repolarization (ST-Tpeak, Tpeak-Tend). Differences within BrS patients (baseline vs. early after EPI-AS-RFA vs. late FU) were analysed by Wilcoxon signed-rank test, while differences between BrS patients and 60 age–sex-matched normal controls were analysed by the Mann–Whitney test. In BrS patients, baseline QRS and QTc durations were longer and normalized after EPI-AS-ATC (151 ± 15 vs. 102 ± 13 ms, P < 0.001; 454 ± 40 vs. 421 ± 27 ms, P < 0.000). Baseline QRS amplitude was lower and increased at late FU (0.63 ± 0.26 vs. 0.84 ± 13 ms, P < 0.000), while Terminal-QRS amplitude decreased (0.24 ± 0.07 vs. 0.08 ± 0.03 ms, P < 0.000). At baseline, CineECG depolarization/repolarization wavefront prevalently localized in RV/RVOT (Terminal-QRS, 57%; ST-Tpeak, 100%; and Tpeak-Tend, 61%), congruent with the AS area on epi-PDM. Early after EPI-AS-RFA, RV/RVOT localization during depolarization disappeared, as Terminal-QRS prevalently localized in the left ventricle (LV, 76%), while repolarization still localized on RV/RVOT [ST-Tpeak (44%) and Tpeak-Tend (98%)]. At late FU, depolarization/ repolarization forces prevalently localized in the LV (Terminal-QRS, 94%; ST-Tpeak, 63%; Tpeak-Tend, 86%), like normal controls. Conclusion CineECG and 12-lead ECG showed a complex temporo-spatial perturbation of both depolarization and repolarization in BrS patients, prevalently localized in RV/RVOT, progressively normalizing after epicardial ablation.
KW - Brugada syndrome
KW - Cardiac ablation
KW - Depolarization
KW - Electrocardiogram
KW - Repolarization
KW - Sudden death
UR - http://www.scopus.com/inward/record.url?scp=85182895745&partnerID=8YFLogxK
U2 - 10.1093/ehjdh/ztad050
DO - 10.1093/ehjdh/ztad050
M3 - Article
AN - SCOPUS:85182895745
SN - 2634-3916
VL - 4
SP - 473
EP - 487
JO - European Heart Journal - Digital Health
JF - European Heart Journal - Digital Health
IS - 6
ER -