Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning

Research output: Contribution to journalArticleAcademicpeer-review

1 Downloads (Pure)

Abstract

Background and purpose: The electrocardiogram (ECG) is frequently obtained in the work-up of COVID-19 patients. So far, no study has evaluated whether ECG-based machine learning models have added value to predict in-hospital mortality specifically in COVID-19 patients. Methods: Using data from the CAPACITY-COVID registry, we studied 882 patients admitted with COVID-19 across seven hospitals in the Netherlands. Raw format 12-lead ECGs recorded within 72 h of admission were studied. With data from five hospitals (n = 634), three models were developed: (a) a logistic regression baseline model using age and sex, (b) a least absolute shrinkage and selection operator (LASSO) model using age, sex and human annotated ECG features, and (c) a pre-trained deep neural network (DNN) using age, sex and the raw ECG waveforms. Data from two hospitals (n = 248) was used for external validation. Results: Performances for models a, b and c were comparable with an area under the receiver operating curve of 0.73 (95% confidence interval [CI] 0.65–0.79), 0.76 (95% CI 0.68–0.82) and 0.77 (95% CI 0.70–0.83) respectively. Predictors of mortality in the LASSO model were age, low QRS voltage, ST depression, premature atrial complexes, sex, increased ventricular rate, and right bundle branch block. Conclusion: This study shows that the ECG-based prediction models could be helpful for the initial risk stratification of patients diagnosed with COVID-19, and that several ECG abnormalities are associated with in-hospital all-cause mortality of COVID-19 patients. Moreover, this proof-of-principle study shows that the use of pre-trained DNNs for ECG analysis does not underperform compared with time-consuming manual annotation of ECG features.

Original languageEnglish
Pages (from-to)312-318
Number of pages7
JournalNetherlands Heart Journal
Volume30
Issue number6
DOIs
Publication statusPublished - Jun 2022

Keywords

  • Arrhythmia
  • COVID-19
  • Deep learning
  • Electrocardiogram
  • Machine learning
  • Mortality

Fingerprint

Dive into the research topics of 'Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning'. Together they form a unique fingerprint.

Cite this