TY - JOUR
T1 - Eigentumors for prediction of treatment failure in patients with early-stage breast cancer using dynamic contrast-enhanced MRI
T2 - a feasibility study
AU - Chan, HM
AU - van der Velden, Bas H M
AU - Loo, Claudette E.
AU - Gilhuijs, Kenneth G A
N1 - Publisher Copyright:
© 2017 Institute of Physics and Engineering in Medicine.
PY - 2017
Y1 - 2017
N2 - We present a radiomics model to discriminate between patients at low risk and those at high risk of treatment failure at long-term follow-up based on eigentumors: principal components computed from volumes encompassing tumors in washin and washout images of pre-treatment dynamic contrast-enhanced (DCE-) MR images. Eigentumors were computed from the images of 563 patients from the MARGINS study. Subsequently, a least absolute shrinkage selection operator (LASSO) selected candidates from the components that contained 90% of the variance of the data. The model for prediction of survival after treatment (median follow-up time 86 months) was based on logistic regression. Receiver operating characteristic (ROC) analysis was applied and area-under-the-curve (AUC) values were computed as measures of training and cross-validated performances. The discriminating potential of the model was confirmed using Kaplan-Meier survival curves and log-rank tests. From the 322 principal components that explained 90% of the variance of the data, the LASSO selected 28 components. The ROC curves of the model yielded AUC values of 0.88, 0.77 and 0.73, for the training, leave-one-out cross-validated and bootstrapped performances, respectively. The bootstrapped Kaplan-Meier survival curves confirmed significant separation for all tumors (P < 0.0001). Survival analysis on immunohistochemical subgroups shows significant separation for the estrogen-receptor subtype tumors (P < 0.0001) and the triple-negative subtype tumors (P = 0.0039), but not for tumors of the HER2 subtype (P = 0.41). The results of this retrospective study show the potential of early-stage pre-treatment eigentumors for use in prediction of treatment failure of breast cancer.
AB - We present a radiomics model to discriminate between patients at low risk and those at high risk of treatment failure at long-term follow-up based on eigentumors: principal components computed from volumes encompassing tumors in washin and washout images of pre-treatment dynamic contrast-enhanced (DCE-) MR images. Eigentumors were computed from the images of 563 patients from the MARGINS study. Subsequently, a least absolute shrinkage selection operator (LASSO) selected candidates from the components that contained 90% of the variance of the data. The model for prediction of survival after treatment (median follow-up time 86 months) was based on logistic regression. Receiver operating characteristic (ROC) analysis was applied and area-under-the-curve (AUC) values were computed as measures of training and cross-validated performances. The discriminating potential of the model was confirmed using Kaplan-Meier survival curves and log-rank tests. From the 322 principal components that explained 90% of the variance of the data, the LASSO selected 28 components. The ROC curves of the model yielded AUC values of 0.88, 0.77 and 0.73, for the training, leave-one-out cross-validated and bootstrapped performances, respectively. The bootstrapped Kaplan-Meier survival curves confirmed significant separation for all tumors (P < 0.0001). Survival analysis on immunohistochemical subgroups shows significant separation for the estrogen-receptor subtype tumors (P < 0.0001) and the triple-negative subtype tumors (P = 0.0039), but not for tumors of the HER2 subtype (P = 0.41). The results of this retrospective study show the potential of early-stage pre-treatment eigentumors for use in prediction of treatment failure of breast cancer.
KW - breast cancer
KW - dynamic contrast-enhanced MRI
KW - principal components
KW - radiomics
KW - survival
UR - http://www.scopus.com/inward/record.url?scp=85026733240&partnerID=8YFLogxK
U2 - 10.1088/1361-6560/aa7dc5
DO - 10.1088/1361-6560/aa7dc5
M3 - Article
C2 - 28678022
SN - 0031-9155
VL - 62
SP - 6467
EP - 6485
JO - Physics in Medicine and Biology
JF - Physics in Medicine and Biology
IS - 16
ER -