TY - JOUR
T1 - Differential isoform expression of Allergin-1 during acute and chronic inflammation
AU - Geerdink, Ruben J.
AU - Pascoal Ramos, Maria Inês
AU - van den Hoogen, Luuk L.
AU - Radstake, Timothy R.D.J.
AU - Shibayama, Shiro
AU - Shibuya, Akira
AU - Bont, Louis
AU - Meyaard, Linde
N1 - Funding Information:
This study was supported by the Netherlands Organization for Scientific Research Graduate Program (Grant No. 022.004.018 to Ruben J. Geerdink). Linde Meyaard is supported by Vici Grant Number 91815608 from the Netherlands Organization for Scientific Research.
Publisher Copyright:
© 2022 The Authors. Immunity, Inflammation and Disease published by John Wiley & Sons Ltd.
PY - 2022/12
Y1 - 2022/12
N2 - Introduction: Neutrophils are crucial to antimicrobial defense, but excessive neutrophilic inflammation elicits immune pathology. Currently, no effective treatment exists to curb neutrophil activation. However, neutrophils express a variety of inhibitory receptors which may represent potential therapeutic targets to limit neutrophilic inflammation. Indeed, we previously showed that the inhibitory collagen receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) regulates neutrophilic airway inflammation and inhibits neutrophil extracellular trap formation. The inhibitory receptor Allergin-1 is expressed by myeloid cells and B cells. Allergin-1 suppresses mast cell and basophil activation, but a potential regulatory role on neutrophils remains unexplored. We aimed to demonstrate the regulation of neutrophils by Allergin-1. Methods: We examine Allergin-1 isoform expression on human neutrophils during homeostatic (healthy donors) and chronic inflammatory (systemic lupus erythematosus patients) conditions in comparison to other circulating leukocytes by flow cytometry. To reveal a potential role for Allergin-1 in regulating neutrophilic inflammation, we experimentally infect wild-type (WT) and Allergin-1-deficient mice with a respiratory syncytial virus (RSV) and monitor disease severity and examine cellular airway infiltrate. Flow cytometry was used to confirm Allergin-1 expression by airway-infiltrated neutrophils in RSV infection-induced bronchiolitis patients. Results: Only the short 1 (S1) isoform, but not the long (L) or S2 isoform could be detected on blood leukocytes, with the exception of nonclassical monocytes, which exclusively express the S2 isoform. Allergin-1 expression levels did not vary significantly between healthy individuals and patients with the systemic inflammatory disease on any interrogated cell type. Airway-infiltrated neutrophils of pediatric RSV bronchiolitis patients were found to express Allergin-1S1. However, Allergin-1-deficient mice experimentally infected with RSV did not show exacerbated disease or increased neutrophil airway infiltration compared to WT littermates. Conclusion: Allergin-1 isoform expression is unaffected by chronic inflammatory conditions. In stark contrast to fellow inhibitory receptor LAIR-1, Allergin-1 does not regulate neutrophilic inflammation in a mouse model of RSV bronchiolitis.
AB - Introduction: Neutrophils are crucial to antimicrobial defense, but excessive neutrophilic inflammation elicits immune pathology. Currently, no effective treatment exists to curb neutrophil activation. However, neutrophils express a variety of inhibitory receptors which may represent potential therapeutic targets to limit neutrophilic inflammation. Indeed, we previously showed that the inhibitory collagen receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) regulates neutrophilic airway inflammation and inhibits neutrophil extracellular trap formation. The inhibitory receptor Allergin-1 is expressed by myeloid cells and B cells. Allergin-1 suppresses mast cell and basophil activation, but a potential regulatory role on neutrophils remains unexplored. We aimed to demonstrate the regulation of neutrophils by Allergin-1. Methods: We examine Allergin-1 isoform expression on human neutrophils during homeostatic (healthy donors) and chronic inflammatory (systemic lupus erythematosus patients) conditions in comparison to other circulating leukocytes by flow cytometry. To reveal a potential role for Allergin-1 in regulating neutrophilic inflammation, we experimentally infect wild-type (WT) and Allergin-1-deficient mice with a respiratory syncytial virus (RSV) and monitor disease severity and examine cellular airway infiltrate. Flow cytometry was used to confirm Allergin-1 expression by airway-infiltrated neutrophils in RSV infection-induced bronchiolitis patients. Results: Only the short 1 (S1) isoform, but not the long (L) or S2 isoform could be detected on blood leukocytes, with the exception of nonclassical monocytes, which exclusively express the S2 isoform. Allergin-1 expression levels did not vary significantly between healthy individuals and patients with the systemic inflammatory disease on any interrogated cell type. Airway-infiltrated neutrophils of pediatric RSV bronchiolitis patients were found to express Allergin-1S1. However, Allergin-1-deficient mice experimentally infected with RSV did not show exacerbated disease or increased neutrophil airway infiltration compared to WT littermates. Conclusion: Allergin-1 isoform expression is unaffected by chronic inflammatory conditions. In stark contrast to fellow inhibitory receptor LAIR-1, Allergin-1 does not regulate neutrophilic inflammation in a mouse model of RSV bronchiolitis.
KW - inhibitory receptor
KW - neutrophils
KW - nonclassical monocytes
KW - respiratory syncytial virus
KW - systemic lupus erythematosus
UR - http://www.scopus.com/inward/record.url?scp=85142885671&partnerID=8YFLogxK
U2 - 10.1002/iid3.739
DO - 10.1002/iid3.739
M3 - Article
C2 - 36444625
AN - SCOPUS:85142885671
SN - 2050-4527
VL - 10
SP - 1
EP - 9
JO - Immunity, inflammation and disease
JF - Immunity, inflammation and disease
IS - 12
M1 - e739
ER -