TY - JOUR
T1 - Diagnostic value of late gadolinium enhancement at cardiovascular magnetic resonance to distinguish arrhythmogenic right ventricular cardiomyopathy from differentials
AU - Rekker, Lian Y
AU - Muller, Steven A
AU - Gasperetti, Alessio
AU - Bourfiss, Mimount
AU - Oerlemans, Marish Ifj
AU - Cramer, Maarten J
AU - Zimmerman, Stefan L
AU - Dooijes, Dennis
AU - Schalkx, Hanke
AU - van der Harst, Pim
AU - James, Cynthia A
AU - Peter van Tintelen, J
AU - Guglielmo, Marco
AU - Velthuis, Birgitta K
AU - Te Riele, Anneline Sjm
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024
Y1 - 2024
N2 - Background: While late gadolinium enhancement (LGE) is proposed as a diagnostic criterion for arrhythmogenic right ventricular cardiomyopathy (ARVC), the potential of LGE to distinguish ARVC from differentials remains unknown. We aimed to assess the diagnostic value of LGE for ARVC diagnosis. Methods: We included 132 subjects (60% male, 47 ± 11 years) who had undergone cardiac magnetic resonance imaging with LGE assessment for ARVC or ARVC differentials. ARVC was diagnosed as per 2010 Task Force Criteria (n = 55). ARVC differentials consisted of familial/genetic dilated cardiomyopathy (n = 25), myocarditis (n = 13), sarcoidosis (n = 20), and amyloidosis (n = 19). The diagnosis of all differentials was based on the most current standard of reference. The presence of LGE was evaluated using a 7-segment right ventricle (RV) and 17-segment left ventricle (LV) model. Subsequently, we assessed LGE patterns for every patient individually for fulfilling LV- and/or RV-LGE per Padua criteria, independent of their clinical diagnosis (i.e. phenotype). Diagnostic values were analyzed using sensitivity and specificity for any RV-LGE, any LV-LGE, RV-LGE per Padua criteria, and prevalence graphs for LV-LGE per Padua criteria. The optimal integration of LGE for ARVC diagnosis was determined using classification and regression tree analysis. Results: One-third (38%) of ARVC patients had RV-LGE, while half (51%) had LV-LGE. RV-LGE was less frequently observed in ARVC vs non-ARVC patients (38% vs 58%, p = 0.034) leading to a poor discriminatory potential (any RV-LGE: sensitivity 38%, specificity 42%; RV-LGE per Padua criteria: sensitivity 36%, specificity 44%). Compared to ARVC patients, non-ARVC patients more often had LV-LGE (91% vs 51%, p < 0.001) which was also more globally distributed (median 9 [interquartile range (IQR): 3–13] vs 0 [IQR: 0–3] segments, p < 0.001). The absence of anteroseptal and absence of extensive (≥5 segments) mid-myocardial LV-LGE, and absence of moderate (≥2 segments) mid-myocardial LV-LGE predicted ARVC with good diagnostic performance (sensitivity 93%, specificity 78%). Conclusion: LGE is often present in ARVC differentials and may lead to false positive diagnoses when used without knowledge of LGE patterns. Moderate RV-LGE without anteroseptal and mid-myocardial LV-LGE is typically observed in ARVC.
AB - Background: While late gadolinium enhancement (LGE) is proposed as a diagnostic criterion for arrhythmogenic right ventricular cardiomyopathy (ARVC), the potential of LGE to distinguish ARVC from differentials remains unknown. We aimed to assess the diagnostic value of LGE for ARVC diagnosis. Methods: We included 132 subjects (60% male, 47 ± 11 years) who had undergone cardiac magnetic resonance imaging with LGE assessment for ARVC or ARVC differentials. ARVC was diagnosed as per 2010 Task Force Criteria (n = 55). ARVC differentials consisted of familial/genetic dilated cardiomyopathy (n = 25), myocarditis (n = 13), sarcoidosis (n = 20), and amyloidosis (n = 19). The diagnosis of all differentials was based on the most current standard of reference. The presence of LGE was evaluated using a 7-segment right ventricle (RV) and 17-segment left ventricle (LV) model. Subsequently, we assessed LGE patterns for every patient individually for fulfilling LV- and/or RV-LGE per Padua criteria, independent of their clinical diagnosis (i.e. phenotype). Diagnostic values were analyzed using sensitivity and specificity for any RV-LGE, any LV-LGE, RV-LGE per Padua criteria, and prevalence graphs for LV-LGE per Padua criteria. The optimal integration of LGE for ARVC diagnosis was determined using classification and regression tree analysis. Results: One-third (38%) of ARVC patients had RV-LGE, while half (51%) had LV-LGE. RV-LGE was less frequently observed in ARVC vs non-ARVC patients (38% vs 58%, p = 0.034) leading to a poor discriminatory potential (any RV-LGE: sensitivity 38%, specificity 42%; RV-LGE per Padua criteria: sensitivity 36%, specificity 44%). Compared to ARVC patients, non-ARVC patients more often had LV-LGE (91% vs 51%, p < 0.001) which was also more globally distributed (median 9 [interquartile range (IQR): 3–13] vs 0 [IQR: 0–3] segments, p < 0.001). The absence of anteroseptal and absence of extensive (≥5 segments) mid-myocardial LV-LGE, and absence of moderate (≥2 segments) mid-myocardial LV-LGE predicted ARVC with good diagnostic performance (sensitivity 93%, specificity 78%). Conclusion: LGE is often present in ARVC differentials and may lead to false positive diagnoses when used without knowledge of LGE patterns. Moderate RV-LGE without anteroseptal and mid-myocardial LV-LGE is typically observed in ARVC.
KW - ARVC
KW - Delayed enhancement
KW - LGE
KW - Magnetic resonance imaging
KW - Padua criteria
U2 - 10.1016/j.jocmr.2024.101059
DO - 10.1016/j.jocmr.2024.101059
M3 - Article
C2 - 38986843
SN - 1097-6647
VL - 26
SP - 101059
JO - Journal of Cardiovascular Magnetic Resonance
JF - Journal of Cardiovascular Magnetic Resonance
IS - 2
M1 - 101059
ER -