TY - JOUR
T1 - Diagnostic model development for schizophrenia based on peripheral blood mononuclear cell subtype-specific expression of metabolic markers
AU - Zaki, Jihan K
AU - Lago, Santiago G
AU - Rustogi, Nitin
AU - Gangadin, Shiral S
AU - Benacek, Jiri
AU - van Rees, Geertje F
AU - Haenisch, Frieder
AU - Broek, Jantine A
AU - Suarez-Pinilla, Paula
AU - Ruland, Tillmann
AU - Auyeung, Bonnie
AU - Mikova, Olya
AU - Kabacs, Nikolett
AU - Arolt, Volker
AU - Baron-Cohen, Simon
AU - Crespo-Facorro, Benedicto
AU - Drexhage, Hemmo A
AU - de Witte, Lot D
AU - Kahn, René S
AU - Sommer, Iris E
AU - Bahn, Sabine
AU - Tomasik, Jakub
N1 - Funding Information:
We are grateful to the participants and their families for their cooperation in this study. We would like to thank blood donors and the clinical centres, for the provision of biological samples, in addition, to supporting staff at the affiliated institutions. We also thank IDIVAL biobank (Inés Santiuste and Jana Arozamena) and UMCU Biobank for clinical sample and data preparation, as well as the PAFIP members for the data collection. This work was supported by the Stanley Medical Research Institute (grant number: 12T-008) and the Dutch Research Council (NWO; grant number: 40–00812–98–12154) received by IES; by grants to SB from the Stanley Medical Research Institute (SMRI) and the Engineering and Physical Sciences Research Council UK (EPSRC); and by grants to BC-F: SAF2016–76046-R and SAF2013–46292-R (MINECO) and PI16/00156 (ISCIII and FEDER).
Funding Information:
We are grateful to the participants and their families for their cooperation in this study. We would like to thank blood donors and the clinical centres, for the provision of biological samples, in addition, to supporting staff at the affiliated institutions. We also thank IDIVAL biobank (Inés Santiuste and Jana Arozamena) and UMCU Biobank for clinical sample and data preparation, as well as the PAFIP members for the data collection. This work was supported by the Stanley Medical Research Institute (grant number: 12T-008) and the Dutch Research Council (NWO; grant number: 40–00812–98–12154) received by IES; by grants to SB from the Stanley Medical Research Institute (SMRI) and the Engineering and Physical Sciences Research Council UK (EPSRC); and by grants to BC-F: SAF2016–76046-R and SAF2013–46292-R (MINECO) and PI16/00156 (ISCIII and FEDER).
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/10/30
Y1 - 2022/10/30
N2 - A significant proportion of the personal and economic burden of schizophrenia can be attributed to the late diagnosis or misdiagnosis of the disorder. A novel, objective diagnostic approaches could facilitate the early detection and treatment of schizophrenia and improve patient outcomes. In the present study, we aimed to identify robust schizophrenia-specific blood biomarkers, with the goal of developing an accurate diagnostic model. The levels of selected serum and peripheral blood mononuclear cell (PBMC) markers relevant to metabolic and immune function were measured in healthy controls (n = 26) and recent-onset schizophrenia patients (n = 36) using multiplexed immunoassays and flow cytometry. Analysis of covariance revealed significant upregulation of insulin receptor (IR) and fatty acid translocase (CD36) levels in T helper cells (F = 10.75, P = 0.002, Q = 0.024 and F = 21.58, P = 2.8 × 10
-5, Q = 0.0004, respectively), as well as downregulation of glucose transporter 1 (GLUT1) expression in monocytes (F = 21.46, P = 2.9 × 10
-5, Q = 0.0004). The most robust predictors, monocyte GLUT1 and T helper cell CD36, were used to develop a diagnostic model, which showed a leave-one-out cross-validated area under the receiver operating characteristic curve (AUC) of 0.78 (95% CI: 0.66-0.92). The diagnostic model was validated in two independent datasets. The model was able to distinguish first-onset, drug-naïve schizophrenia patients (n = 34) from healthy controls (n = 39) with an AUC of 0.75 (95% CI: 0.64-0.86), and also differentiated schizophrenia patients (n = 22) from patients with other neuropsychiatric conditions, including bipolar disorder, major depressive disorder and autism spectrum disorder (n = 68), with an AUC of 0.83 (95% CI: 0.75-0.92). These findings indicate that PBMC-derived biomarkers have the potential to support an accurate and objective differential diagnosis of schizophrenia.
AB - A significant proportion of the personal and economic burden of schizophrenia can be attributed to the late diagnosis or misdiagnosis of the disorder. A novel, objective diagnostic approaches could facilitate the early detection and treatment of schizophrenia and improve patient outcomes. In the present study, we aimed to identify robust schizophrenia-specific blood biomarkers, with the goal of developing an accurate diagnostic model. The levels of selected serum and peripheral blood mononuclear cell (PBMC) markers relevant to metabolic and immune function were measured in healthy controls (n = 26) and recent-onset schizophrenia patients (n = 36) using multiplexed immunoassays and flow cytometry. Analysis of covariance revealed significant upregulation of insulin receptor (IR) and fatty acid translocase (CD36) levels in T helper cells (F = 10.75, P = 0.002, Q = 0.024 and F = 21.58, P = 2.8 × 10
-5, Q = 0.0004, respectively), as well as downregulation of glucose transporter 1 (GLUT1) expression in monocytes (F = 21.46, P = 2.9 × 10
-5, Q = 0.0004). The most robust predictors, monocyte GLUT1 and T helper cell CD36, were used to develop a diagnostic model, which showed a leave-one-out cross-validated area under the receiver operating characteristic curve (AUC) of 0.78 (95% CI: 0.66-0.92). The diagnostic model was validated in two independent datasets. The model was able to distinguish first-onset, drug-naïve schizophrenia patients (n = 34) from healthy controls (n = 39) with an AUC of 0.75 (95% CI: 0.64-0.86), and also differentiated schizophrenia patients (n = 22) from patients with other neuropsychiatric conditions, including bipolar disorder, major depressive disorder and autism spectrum disorder (n = 68), with an AUC of 0.83 (95% CI: 0.75-0.92). These findings indicate that PBMC-derived biomarkers have the potential to support an accurate and objective differential diagnosis of schizophrenia.
KW - Autism Spectrum Disorder/metabolism
KW - Biomarkers
KW - Depressive Disorder, Major/metabolism
KW - Glucose Transporter Type 1/metabolism
KW - Humans
KW - Leukocytes, Mononuclear/metabolism
KW - Schizophrenia/metabolism
UR - http://www.scopus.com/inward/record.url?scp=85140889811&partnerID=8YFLogxK
U2 - 10.1038/s41398-022-02229-w
DO - 10.1038/s41398-022-02229-w
M3 - Article
C2 - 36310155
SN - 2158-3188
VL - 12
JO - Translational Psychiatry
JF - Translational Psychiatry
IS - 1
M1 - 457
ER -