TY - JOUR
T1 - Diagnostic accuracy of functional magnetic resonance imaging, Wada test, magnetoencephalography, and functional transcranial Doppler sonography for memory and language outcome after epilepsy surgery
T2 - A systematic review
AU - Schmid, Elisabeth
AU - Thomschewski, Aljoscha
AU - Taylor, Alexandra
AU - Zimmermann, Georg
AU - Kirschner, Margarita
AU - Kobulashvili, Teia
AU - Brigo, Francesco
AU - Rados, Matea
AU - Helmstaedter, Christoph
AU - Braun, Kees
AU - Trinka, Eugen
N1 - Funding Information:
This work arose from the project E‐PILEPSY, which has received funding from the European Union (grant agreement 20131203), in the framework of the Health Program (2008‐2013).
Publisher Copyright:
© 2018 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
PY - 2018/12
Y1 - 2018/12
N2 - Objective: The European Union–funded E-PILEPSY project was launched to develop guidelines and recommendations for epilepsy surgery. In this systematic review, we aimed to assess the diagnostic accuracy of functional magnetic resonance imaging (fMRI), Wada test, magnetoencephalography (MEG), and functional transcranial Doppler sonography (fTCD) for memory and language decline after surgery. Methods: The literature search was conducted using PubMed, Embase, and CENTRAL. The diagnostic accuracy was expressed in terms of sensitivity and specificity for postoperative language or memory decline, as determined by pre- and postoperative neuropsychological assessments. If two or more estimates of sensitivity or specificity were extracted from a study, two meta-analyses were conducted, using the maximum (“best case”) and the minimum (“worst case”) of the extracted estimates, respectively. Results: Twenty-eight papers were eligible for data extraction and further analysis. All tests for heterogeneity were highly significant, indicating large between-study variability (P < 0.001). For memory outcomes, meta-analyses were conducted for Wada tests (n = 17) using both memory and language laterality quotients. In the best case, meta-analyses yielded a sensitivity estimate of 0.79 (95% confidence interval [CI] = 0.67-0.92) and a specificity estimate of 0.65 (95% CI = 0.47-0.83). For the worst case, meta-analyses yielded a sensitivity estimate of 0.65 (95% CI = 0.48-0.82) and a specificity estimate of 0.46 (95% CI = 0.28-0.65). The overall quality of evidence, which was assessed using Grading of Recommendations Assessment, Development, and Evaluation methodology, was rated as very low. Meta-analyses concerning diagnostic accuracy of fMRI, fTCD, and MEG were not feasible due to small numbers of studies (fMRI, n = 4; fTCD, n = 1; MEG, n = 0). This also applied to studies concerning language outcomes (Wada test, n = 6; fMRI, n = 2; fTCD, n = 1; MEG, n = 0). Significance: Meta-analyses could only be conducted in a few subgroups for the Wada test with low-quality evidence. Thus, more evidence from high-quality studies and improved data reporting are required. Moreover, the large between-study heterogeneity underlines the necessity for more homogeneous and thus comparable studies in future research.
AB - Objective: The European Union–funded E-PILEPSY project was launched to develop guidelines and recommendations for epilepsy surgery. In this systematic review, we aimed to assess the diagnostic accuracy of functional magnetic resonance imaging (fMRI), Wada test, magnetoencephalography (MEG), and functional transcranial Doppler sonography (fTCD) for memory and language decline after surgery. Methods: The literature search was conducted using PubMed, Embase, and CENTRAL. The diagnostic accuracy was expressed in terms of sensitivity and specificity for postoperative language or memory decline, as determined by pre- and postoperative neuropsychological assessments. If two or more estimates of sensitivity or specificity were extracted from a study, two meta-analyses were conducted, using the maximum (“best case”) and the minimum (“worst case”) of the extracted estimates, respectively. Results: Twenty-eight papers were eligible for data extraction and further analysis. All tests for heterogeneity were highly significant, indicating large between-study variability (P < 0.001). For memory outcomes, meta-analyses were conducted for Wada tests (n = 17) using both memory and language laterality quotients. In the best case, meta-analyses yielded a sensitivity estimate of 0.79 (95% confidence interval [CI] = 0.67-0.92) and a specificity estimate of 0.65 (95% CI = 0.47-0.83). For the worst case, meta-analyses yielded a sensitivity estimate of 0.65 (95% CI = 0.48-0.82) and a specificity estimate of 0.46 (95% CI = 0.28-0.65). The overall quality of evidence, which was assessed using Grading of Recommendations Assessment, Development, and Evaluation methodology, was rated as very low. Meta-analyses concerning diagnostic accuracy of fMRI, fTCD, and MEG were not feasible due to small numbers of studies (fMRI, n = 4; fTCD, n = 1; MEG, n = 0). This also applied to studies concerning language outcomes (Wada test, n = 6; fMRI, n = 2; fTCD, n = 1; MEG, n = 0). Significance: Meta-analyses could only be conducted in a few subgroups for the Wada test with low-quality evidence. Thus, more evidence from high-quality studies and improved data reporting are required. Moreover, the large between-study heterogeneity underlines the necessity for more homogeneous and thus comparable studies in future research.
KW - diagnostic accuracy
KW - epilepsy surgery
KW - language
KW - memory
KW - systematic review
UR - http://www.scopus.com/inward/record.url?scp=85055684574&partnerID=8YFLogxK
U2 - 10.1111/epi.14588
DO - 10.1111/epi.14588
M3 - Review article
AN - SCOPUS:85055684574
SN - 0013-9580
VL - 59
SP - 2305
EP - 2317
JO - Epilepsia
JF - Epilepsia
IS - 12
ER -