Diagnosis extraction from unstructured Dutch echocardiogram reports using span- and document-level characteristic classification

Bauke Arends*, Melle Vessies, Dirk van Osch, Arco Teske, Pim van der Harst, René van Es, Bram van Es

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

BACKGROUND: Clinical machine learning research and artificial intelligence driven clinical decision support models rely on clinically accurate labels. Manually extracting these labels with the help of clinical specialists is often time-consuming and expensive. This study tests the feasibility of automatic span- and document-level diagnosis extraction from unstructured Dutch echocardiogram reports. METHODS: We included 115,692 unstructured echocardiogram reports from the University Medical Center Utrecht, a large university hospital in the Netherlands. A randomly selected subset was manually annotated for the occurrence and severity of eleven commonly described cardiac characteristics. We developed and tested several automatic labelling techniques at both span and document levels, using weighted and macro F1-score, precision, and recall for performance evaluation. We compared the performance of span labelling against document labelling methods, which included both direct document classifiers and indirect document classifiers that rely on span classification results. RESULTS: The SpanCategorizer and MedRoBERTa.nl models outperformed all other span and document classifiers, respectively. The weighted F1-score varied between characteristics, ranging from 0.60 to 0.93 in SpanCategorizer and 0.96 to 0.98 in MedRoBERTa.nl. Direct document classification was superior to indirect document classification using span classifiers. SetFit achieved competitive document classification performance using only 10% of the training data. Utilizing a reduced label set yielded near-perfect document classification results. CONCLUSION: We recommend using our published SpanCategorizer and MedRoBERTa.nl models for span- and document-level diagnosis extraction from Dutch echocardiography reports. For settings with limited training data, SetFit may be a promising alternative for document classification. Future research should be aimed at training a RoBERTa based span classifier and applying English based models on translated echocardiogram reports.

Original languageEnglish
Article number115
Number of pages20
JournalBMC Medical Informatics and Decision Making
Volume25
Issue number1
DOIs
Publication statusPublished - 7 Mar 2025

Keywords

  • Clinical natural language processing
  • Document classification
  • Echocardiogram
  • Entity classification
  • Span classification

Fingerprint

Dive into the research topics of 'Diagnosis extraction from unstructured Dutch echocardiogram reports using span- and document-level characteristic classification'. Together they form a unique fingerprint.

Cite this