TY - JOUR
T1 - Diagnosis and risk prediction of dilated cardiomyopathy in the era of big data and genomics
AU - Sammani, Arjan
AU - Baas, Annette F.
AU - Asselbergs, Folkert W.
AU - Te Riele, Anneline S.J.M.
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/3/1
Y1 - 2021/3/1
N2 - Dilated cardiomyopathy (DCM) is a leading cause of heart failure and life-threatening ventricular arrhythmias (LTVA). Work-up and risk stratification of DCM is clinically challenging, as there is great heterogeneity in phenotype and genotype. Throughout the last decade, improved genetic testing of patients has identified genotype–phenotype associations and enhanced evaluation of at-risk relatives leading to better patient prognosis. The field is now ripe to explore opportunities to improve personalised risk assessments. Multivariable risk models presented as “risk calculators” can incorporate a multitude of clinical variables and predict outcome (such as heart failure hospi-talisations or LTVA). In addition, genetic risk scores derived from genome/exome-wide association studies can estimate an individual’s lifetime genetic risk of developing DCM. The use of clinically granular investigations, such as late gadolinium enhancement on cardiac magnetic resonance im-aging, is warranted in order to increase predictive performance. To this end, constructing big data infrastructures improves accessibility of data by using electronic health records, existing research databases, and disease registries. By applying methods such as machine and deep learning, we can model complex interactions, identify new phenotype clusters, and perform prognostic modelling. This review aims to provide an overview of the evolution of DCM definitions as well as its clinical work-up and considerations in the era of genomics. In addition, we present exciting examples in the field of big data infrastructures, personalised prognostic assessment, and artificial intelligence.
AB - Dilated cardiomyopathy (DCM) is a leading cause of heart failure and life-threatening ventricular arrhythmias (LTVA). Work-up and risk stratification of DCM is clinically challenging, as there is great heterogeneity in phenotype and genotype. Throughout the last decade, improved genetic testing of patients has identified genotype–phenotype associations and enhanced evaluation of at-risk relatives leading to better patient prognosis. The field is now ripe to explore opportunities to improve personalised risk assessments. Multivariable risk models presented as “risk calculators” can incorporate a multitude of clinical variables and predict outcome (such as heart failure hospi-talisations or LTVA). In addition, genetic risk scores derived from genome/exome-wide association studies can estimate an individual’s lifetime genetic risk of developing DCM. The use of clinically granular investigations, such as late gadolinium enhancement on cardiac magnetic resonance im-aging, is warranted in order to increase predictive performance. To this end, constructing big data infrastructures improves accessibility of data by using electronic health records, existing research databases, and disease registries. By applying methods such as machine and deep learning, we can model complex interactions, identify new phenotype clusters, and perform prognostic modelling. This review aims to provide an overview of the evolution of DCM definitions as well as its clinical work-up and considerations in the era of genomics. In addition, we present exciting examples in the field of big data infrastructures, personalised prognostic assessment, and artificial intelligence.
KW - Artificial intelligence
KW - Big data
KW - Deep learning
KW - Diagnosis
KW - Dilated cardiomyopathy
KW - Genetic
KW - Prognosis
UR - http://www.scopus.com/inward/record.url?scp=85105724645&partnerID=8YFLogxK
U2 - 10.3390/jcm10050921
DO - 10.3390/jcm10050921
M3 - Review article
AN - SCOPUS:85105724645
SN - 2077-0383
VL - 10
SP - 1
EP - 16
JO - Journal of Clinical medicine
JF - Journal of Clinical medicine
IS - 5
M1 - 921
ER -