Diagnosing eosinophilic asthma using a multivariate prediction model based on blood granulocyte responsiveness

B Hilvering, S J H Vijverberg, J Jansen, L Houben, R C Schweizer, S Go, L Xue, I D Pavord, J-W J Lammers, L Koenderman

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Background: The identification of inflammatory asthma phenotypes, using sputum analysis, has proven its value in diagnosis and disease monitoring. However due to technical limitations of sputum analysis, there is a strong need for fast and noninvasive diagnostics. This study included the activation state of eosinophils and neutrophils in peripheral blood to phenotype and monitor asthma. Objectives: To (i) construct a multivariable model using the activation state of blood granulocytes, (ii) compare its diagnostic value with sputum eosinophilia as gold standard and (iii) validate the model in an independent patient cohort. Methods: Clinical parameters, activation of blood granulocytes and sputum characteristics were assessed in 115 adult patients with asthma (training cohort/Utrecht) and 34 patients (validation cohort/Oxford). Results: The combination of blood eosinophil count, fractional exhaled nitric oxide, Asthma Control Questionnaire, medication use, nasal polyposis, aspirin sensitivity and neutrophil/eosinophil responsiveness upon stimulation with formyl-methionyl-leucyl phenylalanine was found to identify sputum eosinophilia with 90.5% sensitivity and 91.5% specificity in the training cohort and with 77% sensitivity and 71% specificity in the validation cohort (relatively high percentage on oral corticosteroids [OCS]). Conclusions: The proposed prediction model identifies eosinophilic asthma without the need for sputum induction. The model forms a noninvasive and externally validated test to assess eosinophilic asthma in patients not on OCS.

Original languageEnglish
Pages (from-to)1202-1211
Number of pages10
JournalAllergy
Volume72
Issue number8
Early online date28 Dec 2016
DOIs
Publication statusPublished - Aug 2017

Keywords

  • FeNO
  • aspirin sensitivity
  • eosinophil
  • nasal polyps
  • sputum

Fingerprint

Dive into the research topics of 'Diagnosing eosinophilic asthma using a multivariate prediction model based on blood granulocyte responsiveness'. Together they form a unique fingerprint.

Cite this