TY - JOUR
T1 - Development and validation of a deep learning-based method for automatic measurement of uterus, fibroid, and ablated volume in MRI after MR-HIFU treatment of uterine fibroids
AU - Slotman, Derk J.
AU - Bartels, Lambertus W.
AU - Nijholt, Ingrid M.
AU - Huirne, Judith A.F.
AU - Moonen, Chrit T.W.
AU - Boomsma, Martijn F.
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/9
Y1 - 2024/9
N2 - Introduction: The non-perfused volume divided by total fibroid load (NPV/TFL) is a predictive outcome parameter for MRI-guided high-intensity focused ultrasound (MR-HIFU) treatments of uterine fibroids, which is related to long-term symptom relief. In current clinical practice, the MR-HIFU outcome parameters are typically determined by visual inspection, so an automated computer-aided method could facilitate objective outcome quantification. The objective of this study was to develop and evaluate a deep learning-based segmentation algorithm for volume measurements of the uterus, uterine fibroids, and NPVs in MRI in order to automatically quantify the NPV/TFL. Materials and Methods: A segmentation pipeline was developed and evaluated using expert manual segmentations of MRI scans of 115 uterine fibroid patients, screened for and/or undergoing MR-HIFU treatment. The pipeline contained three separate neural networks, one per target structure. The first step in the pipeline was uterus segmentation from contrast-enhanced (CE)-T1w scans. This segmentation was subsequently used to remove non-uterus background tissue for NPV and fibroid segmentation. In the following step, NPVs were segmented from uterus-only CE-T1w scans. Finally, fibroids were segmented from uterus-only T2w scans. The segmentations were used to calculate the volume for each structure. Reliability and agreement between manual and automatic segmentations, volumes, and NPV/TFLs were assessed. Results: For treatment scans, the Dice similarity coefficients (DSC) between the manually and automatically obtained segmentations were 0.90 (uterus), 0.84 (NPV) and 0.74 (fibroid). Intraclass correlation coefficients (ICC) were 1.00 [0.99, 1.00] (uterus), 0.99 [0.98, 1.00] (NPV) and 0.98 [0.95, 0.99] (fibroid) between manually and automatically derived volumes. For manually and automatically derived NPV/TFLs, the mean difference was 5% [-41%, 51%] (ICC: 0.66 [0.32, 0.85]). Conclusion: The algorithm presented in this study automatically calculates uterus volume, fibroid load, and NPVs, which could lead to more objective outcome quantification after MR-HIFU treatments of uterine fibroids in comparison to visual inspection. When robustness has been ascertained in a future study, this tool may eventually be employed in clinical practice to automatically measure the NPV/TFL after MR-HIFU procedures of uterine fibroids.
AB - Introduction: The non-perfused volume divided by total fibroid load (NPV/TFL) is a predictive outcome parameter for MRI-guided high-intensity focused ultrasound (MR-HIFU) treatments of uterine fibroids, which is related to long-term symptom relief. In current clinical practice, the MR-HIFU outcome parameters are typically determined by visual inspection, so an automated computer-aided method could facilitate objective outcome quantification. The objective of this study was to develop and evaluate a deep learning-based segmentation algorithm for volume measurements of the uterus, uterine fibroids, and NPVs in MRI in order to automatically quantify the NPV/TFL. Materials and Methods: A segmentation pipeline was developed and evaluated using expert manual segmentations of MRI scans of 115 uterine fibroid patients, screened for and/or undergoing MR-HIFU treatment. The pipeline contained three separate neural networks, one per target structure. The first step in the pipeline was uterus segmentation from contrast-enhanced (CE)-T1w scans. This segmentation was subsequently used to remove non-uterus background tissue for NPV and fibroid segmentation. In the following step, NPVs were segmented from uterus-only CE-T1w scans. Finally, fibroids were segmented from uterus-only T2w scans. The segmentations were used to calculate the volume for each structure. Reliability and agreement between manual and automatic segmentations, volumes, and NPV/TFLs were assessed. Results: For treatment scans, the Dice similarity coefficients (DSC) between the manually and automatically obtained segmentations were 0.90 (uterus), 0.84 (NPV) and 0.74 (fibroid). Intraclass correlation coefficients (ICC) were 1.00 [0.99, 1.00] (uterus), 0.99 [0.98, 1.00] (NPV) and 0.98 [0.95, 0.99] (fibroid) between manually and automatically derived volumes. For manually and automatically derived NPV/TFLs, the mean difference was 5% [-41%, 51%] (ICC: 0.66 [0.32, 0.85]). Conclusion: The algorithm presented in this study automatically calculates uterus volume, fibroid load, and NPVs, which could lead to more objective outcome quantification after MR-HIFU treatments of uterine fibroids in comparison to visual inspection. When robustness has been ascertained in a future study, this tool may eventually be employed in clinical practice to automatically measure the NPV/TFL after MR-HIFU procedures of uterine fibroids.
KW - Deep Learning
KW - High-Intensity Focused Ultrasound Ablation
KW - Leiomyoma
KW - MRI
KW - Segmentation
KW - Uterus
KW - Volumetry
UR - http://www.scopus.com/inward/record.url?scp=85197765392&partnerID=8YFLogxK
U2 - 10.1016/j.ejrad.2024.111602
DO - 10.1016/j.ejrad.2024.111602
M3 - Article
AN - SCOPUS:85197765392
SN - 0720-048X
VL - 178
JO - European Journal of Radiology
JF - European Journal of Radiology
M1 - 111602
ER -