TY - JOUR
T1 - Decoding hand gestures from primary somatosensory cortex using high-density ECoG
AU - Branco, Mariana P
AU - Freudenburg, Zachary V.
AU - Aarnoutse, Erik J.
AU - Bleichner, Martin G.
AU - Vansteensel, Mariska J.
AU - Ramsey, Nick F.
N1 - Funding Information:
This research was funded by the ERC-Advanced ?iConnect? project (grant ADV 320708), the BrainGain Smart Mix Programme (grant SSM06011) and the Dutch Technology Foundation STW (grant UGT7685). We thank Frans Leijten, Cyrille Ferrier, Geertjan Huiskamp, and Tineke Gebbink for their help in collecting data, Peter Gosselaar and Peter van Rijen for implanting the electrodes, as well as the technicians, the staff of the clinical neurophysiology department and the subjects for their time and effort.
Publisher Copyright:
© 2016 Elsevier Inc.
PY - 2017/2/15
Y1 - 2017/2/15
N2 - Electrocorticography (ECoG) based Brain-Computer Interfaces (BCIs) have been proposed as a way to restore and replace motor function or communication in severely paralyzed people. To date, most motor-based BCIs have either focused on the sensorimotor cortex as a whole or on the primary motor cortex (M1) as a source of signals for this purpose. Still, target areas for BCI are not confined to M1, and more brain regions may provide suitable BCI control signals. A logical candidate is the primary somatosensory cortex (S1), which not only shares similar somatotopic organization to M1, but also has been suggested to have a role beyond sensory feedback during movement execution. Here, we investigated whether four complex hand gestures, taken from the American sign language alphabet, can be decoded exclusively from S1 using both spatial and temporal information. For decoding, we used the signal recorded from a small patch of cortex with subdural high-density (HD) grids in five patients with intractable epilepsy. Notably, we introduce a new method of trial alignment based on the increase of the electrophysiological response, which virtually eliminates the confounding effects of systematic and non-systematic temporal differences within and between gestures execution. Results show that S1 classification scores are high (76%), similar to those obtained from M1 (74%) and sensorimotor cortex as a whole (85%), and significantly above chance level (25%). We conclude that S1 offers characteristic spatiotemporal neuronal activation patterns that are discriminative between gestures, and that it is possible to decode gestures with high accuracy from a very small patch of cortex using subdurally implanted HD grids. The feasibility of decoding hand gestures using HD-ECoG grids encourages further investigation of implantable BCI systems for direct interaction between the brain and external devices with multiple degrees of freedom.
AB - Electrocorticography (ECoG) based Brain-Computer Interfaces (BCIs) have been proposed as a way to restore and replace motor function or communication in severely paralyzed people. To date, most motor-based BCIs have either focused on the sensorimotor cortex as a whole or on the primary motor cortex (M1) as a source of signals for this purpose. Still, target areas for BCI are not confined to M1, and more brain regions may provide suitable BCI control signals. A logical candidate is the primary somatosensory cortex (S1), which not only shares similar somatotopic organization to M1, but also has been suggested to have a role beyond sensory feedback during movement execution. Here, we investigated whether four complex hand gestures, taken from the American sign language alphabet, can be decoded exclusively from S1 using both spatial and temporal information. For decoding, we used the signal recorded from a small patch of cortex with subdural high-density (HD) grids in five patients with intractable epilepsy. Notably, we introduce a new method of trial alignment based on the increase of the electrophysiological response, which virtually eliminates the confounding effects of systematic and non-systematic temporal differences within and between gestures execution. Results show that S1 classification scores are high (76%), similar to those obtained from M1 (74%) and sensorimotor cortex as a whole (85%), and significantly above chance level (25%). We conclude that S1 offers characteristic spatiotemporal neuronal activation patterns that are discriminative between gestures, and that it is possible to decode gestures with high accuracy from a very small patch of cortex using subdurally implanted HD grids. The feasibility of decoding hand gestures using HD-ECoG grids encourages further investigation of implantable BCI systems for direct interaction between the brain and external devices with multiple degrees of freedom.
KW - Brain-computer interface
KW - Decoding
KW - Electrocorticography
KW - Primary motor cortex
KW - Primary somatosensory cortex
UR - http://www.scopus.com/inward/record.url?scp=85006055500&partnerID=8YFLogxK
U2 - 10.1016/j.neuroimage.2016.12.004
DO - 10.1016/j.neuroimage.2016.12.004
M3 - Article
C2 - 27926827
AN - SCOPUS:85006055500
SN - 1053-8119
VL - 147
SP - 130
EP - 142
JO - NeuroImage
JF - NeuroImage
ER -