Controlled X-chromosome dynamics defines meiotic potential of female mouse in vitro germ cells

Jacqueline Severino, Moritz Bauer, Tom Mattimoe, Niccolò Arecco, Luca Cozzuto, Patricia Lorden, Norio Hamada, Yoshiaki Nosaka, So I. Nagaoka, Pauline Audergon, Antonio Tarruell, Holger Heyn, Katsuhiko Hayashi, Mitinori Saitou, Bernhard Payer*

*Corresponding author for this work

    Research output: Contribution to journalArticleAcademicpeer-review

    Abstract

    The mammalian germline is characterized by extensive epigenetic reprogramming during its development into functional eggs and sperm. Specifically, the epigenome requires resetting before parental marks can be established and transmitted to the next generation. In the female germline, X-chromosome inactivation and reactivation are among the most prominent epigenetic reprogramming events, yet very little is known about their kinetics and biological function. Here, we investigate X-inactivation and reactivation dynamics using a tailor-made in vitro system of primordial germ cell-like cell (PGCLC) differentiation from mouse embryonic stem cells. We find that X-inactivation in PGCLCs in vitro and in germ cell-competent epiblast cells in vivo is moderate compared to somatic cells, and frequently characterized by escaping genes. X-inactivation is followed by step-wise X-reactivation, which is mostly completed during meiotic prophase I. Furthermore, we find that PGCLCs which fail to undergo X-inactivation or reactivate too rapidly display impaired meiotic potential. Thus, our data reveal fine-tuned X-chromosome remodelling as a critical feature of female germ cell development towards meiosis and oogenesis.

    Original languageEnglish
    Article numbere109457
    Pages (from-to)1-23
    JournalEMBO Journal
    Volume41
    Issue number12
    DOIs
    Publication statusPublished - 14 Jun 2022

    Keywords

    • epigenetic reprogramming
    • in vitro model
    • meiosis
    • primordial germ cells
    • X-chromosome inactivation

    Fingerprint

    Dive into the research topics of 'Controlled X-chromosome dynamics defines meiotic potential of female mouse in vitro germ cells'. Together they form a unique fingerprint.

    Cite this