TY - JOUR
T1 - Comprehensive in silico and functional studies for classification of EPAS1/HIF2A genetic variants identified in patients with erythrocytosis
AU - Karaghiannis, Valéna
AU - Maric, Darko
AU - Garrec, Céline
AU - Maaziz, Nada
AU - Buffet, Alexandre
AU - Schmitt, Loïc
AU - Antunes, Vincent
AU - Airaud, Fabrice
AU - Aral, Bernard
AU - Le Roy, Amandine
AU - Corbineau, Sébastien
AU - Mansour-Hendili, Lamisse
AU - Lesieur, Valentine
AU - Rimbert, Antoine
AU - Laporte, Fabien
AU - Delamare, Marine
AU - Rab, Minke
AU - Bézieau, Stéphane
AU - Cassinat, Bruno
AU - Galacteros, Frédéric
AU - Gimenez-Roqueplo, Anne Paule
AU - Burnichon, Nelly
AU - Cario, Holger
AU - van Wijk, Richard
AU - Bento, Celeste
AU - Girodon, François
AU - Hoogewijs, David
AU - Gardie, Betty
N1 - Publisher Copyright:
© 2023 Ferrata Storti Foundation.
PY - 2023/6
Y1 - 2023/6
N2 - Gain-of-function mutations in the EPAS1/HIF2A gene have been identified in patients with hereditary erythrocytosis that can be associated with the development of paraganglioma, pheochromocytoma and somatostatinoma. In the present study, we describe a unique European collection of 41 patients and 28 relatives diagnosed with an erythrocytosis associated with a germline genetic variant in EPAS1. In addition we identified two infants with severe erythrocytosis associated with a mosaic mutation present in less than 2% of the blood, one of whom later developed a paraganglioma. The aim of this study was to determine the causal role of these genetic variants, to establish pathogenicity, and to identify potential candidates eligible for the new hypoxia-inducible factor-2 α (HIF-2α) inhibitor treatment. Pathogenicity was predicted with in silico tools and the impact of 13 HIF-2b variants has been studied by using canonical and real-time reporter luciferase assays. These functional assays consisted of a novel edited vector containing an expanded region of the erythropoietin promoter combined with distal regulatory elements which substantially enhanced the HIF-2α-dependent induction. Altogether, our studies allowed the classification of 11 mutations as pathogenic in 17 patients and 23 relatives. We described four new mutations (D525G, L526F, G527K, A530S) close to the key proline P531, which broadens the spectrum of mutations involved in erythrocytosis. Notably, we identified patients with only erythrocytosis associated with germline mutations A530S and Y532C previously identified at somatic state in tumors, thereby raising the complexity of the genotype/phenotype correlations. Altogether, this study allows accurate clinical follow-up of patients and opens the possibility of benefiting from HIF-2α inhibitor treatment, so far the only targeted treatment in hypoxia-related erythrocytosis disease.
AB - Gain-of-function mutations in the EPAS1/HIF2A gene have been identified in patients with hereditary erythrocytosis that can be associated with the development of paraganglioma, pheochromocytoma and somatostatinoma. In the present study, we describe a unique European collection of 41 patients and 28 relatives diagnosed with an erythrocytosis associated with a germline genetic variant in EPAS1. In addition we identified two infants with severe erythrocytosis associated with a mosaic mutation present in less than 2% of the blood, one of whom later developed a paraganglioma. The aim of this study was to determine the causal role of these genetic variants, to establish pathogenicity, and to identify potential candidates eligible for the new hypoxia-inducible factor-2 α (HIF-2α) inhibitor treatment. Pathogenicity was predicted with in silico tools and the impact of 13 HIF-2b variants has been studied by using canonical and real-time reporter luciferase assays. These functional assays consisted of a novel edited vector containing an expanded region of the erythropoietin promoter combined with distal regulatory elements which substantially enhanced the HIF-2α-dependent induction. Altogether, our studies allowed the classification of 11 mutations as pathogenic in 17 patients and 23 relatives. We described four new mutations (D525G, L526F, G527K, A530S) close to the key proline P531, which broadens the spectrum of mutations involved in erythrocytosis. Notably, we identified patients with only erythrocytosis associated with germline mutations A530S and Y532C previously identified at somatic state in tumors, thereby raising the complexity of the genotype/phenotype correlations. Altogether, this study allows accurate clinical follow-up of patients and opens the possibility of benefiting from HIF-2α inhibitor treatment, so far the only targeted treatment in hypoxia-related erythrocytosis disease.
UR - http://www.scopus.com/inward/record.url?scp=85152066296&partnerID=8YFLogxK
U2 - 10.3324/haematol.2022.281698
DO - 10.3324/haematol.2022.281698
M3 - Article
C2 - 36700397
AN - SCOPUS:85152066296
SN - 0390-6078
VL - 108
SP - 1652
EP - 1666
JO - Haematologica
JF - Haematologica
IS - 6
ER -