Comparison of six fit algorithms for the intravoxel incoherent motion model of diffusionweighted magnetic resonance imaging data of pancreatic cancer patients

Oliver J. Gurney-Champion, Remy Klaassen, Martijn Froeling, Sebastiano Barbieri, Jaap Stoker, Marc R.W. Engelbrecht, Johanna W. Wilmink, Marc G. Besselink, Arjan Bel, Hanneke W.M. Van Laarhoven, Aart J. Nederveen

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The intravoxel incoherent motion (IVIM) model for diffusion-weighted imaging (DWI) MRI data bears much promise as a tool for visualizing tumours and monitoring treatment response. To improve the currently poor precision of IVIM, several fit algorithms have been suggested. In this work, we compared the performance of two Bayesian IVIM fit algorithms and four other IVIM fit algorithms for pancreatic cancer imaging. DWI data were acquired in 14 pancreatic cancer patients during two MRI examinations. Three different measures of performance of the fitting algorithms were assessed: (i) uniqueness of fit parameters (Spearman's rho); (ii) precision (within-subject coefficient of variation, wCV); and (iii) contrast between tumour and normal-appearing pancreatic tissue. For the diffusivity D and perfusion fraction f, a Bayesian fit (IVIM-Bayesian-lin) offered the best trade-off between tumour contrast and precision. With the exception for IVIMBayesian- lin, all algorithms resulted in a very poor precision of the pseudo-diffusion coefficient D∗ with a wCV of more than 50%. The pseudo-diffusion coefficient D∗ of the Bayesian approaches were, however, significantly correlated with D and f. Therefore, the added value of fitting D∗ was considered limited in pancreatic cancer patients. The easier implemented least squares fit with fixed D∗ (IVIM-fixed) performed similar to IVIM-Bayesian-lin for f and D. In conclusion, the best performing IVIM fit algorithm was IVM-Bayesian-lin, but an easier to implement least squares fit with fixed D∗ performs similarly in pancreatic cancer patients.

Original languageEnglish
Article numbere0194590
Pages (from-to)1-18
JournalPLoS ONE
Volume13
Issue number4
DOIs
Publication statusPublished - 1 Apr 2018
Externally publishedYes

Keywords

  • Aged
  • Algorithms
  • Bayes Theorem
  • Female
  • Humans
  • Image Interpretation, Computer-Assisted/methods
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged
  • Pancreatic Neoplasms/pathology
  • Prospective Studies

Fingerprint

Dive into the research topics of 'Comparison of six fit algorithms for the intravoxel incoherent motion model of diffusionweighted magnetic resonance imaging data of pancreatic cancer patients'. Together they form a unique fingerprint.

Cite this