Abstract
Chimeric antigen receptor (CAR) T cell therapies have resulted in profound clinical responses in the treatment of CD19-positive hematological malignancies, but a significant proportion of patients do not respond or relapse eventually. As an alternative to CAR T cells, T cells can be engineered to express a tumor-targeting T cell receptor (TCR). Due to HLA restriction of TCRs, CARs have emerged as a preferred treatment moiety when targeting surface antigens, despite the fact that functional differences between engineered TCR (eTCR) T and CAR T cells remain ill-defined. Here, we compared the activity of CAR T cells versus engineered TCR T cells in targeting the B cell malignancy-associated antigen CD20 as a function of antigen exposure. We found CAR T cells to be more potent effector cells, producing higher levels of cytokines and killing more efficiently than eTCR T cells in a short time frame. However, we revealed that the increase of antigen exposure significantly impaired CAR T cell expansion, a phenotype defined by high expression of coinhibitory molecules and effector differentiation. In contrast, eTCR T cells expanded better than CAR T cells under high antigenic pressure, with lower expression of coinhibitory molecules and maintenance of an early differentiation phenotype, and comparable clearance of tumor cells.
Original language | English |
---|---|
Article number | 2033528 |
Journal | OncoImmunology |
Volume | 11 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2022 |
Keywords
- activation-induced cell death
- antigen exposure
- CAR
- chimeric antigen receptor
- comparison
- exhaustion
- solid tumors
- T cell receptor
- TCR
- tumor load