Abstract
Purpose: To show that a combination of parallel imaging using sensitivity encoding (SENSE) and inner volume imaging (IVI) combines the known benefits of both techniques. SENSE with a reduced field of excitation (rFOX) is termed rSENSE. Theory and Methods: The noise level in SENSE reconstructions is reduced by removing voxels from the unfolding process that are rendered silent by using rFOX. The silent voxels need to be identified beforehand, this is done by using rFOX in the coil sensitivity maps. In vivo experiments were performed at 7 Tesla using a 32-channel receive coil. Results: Good image quality could be obtained in vivo with rSENSE at acceleration factors that are higher than could be obtained using SENSE or IVI alone. With rSENSE we were also able to accelerate scans using an rFOX that was purposely designed to be imperfect or incompatible at all with IVI. Conclusion: rSENSE has been demonstrated in vivo with two-dimensionally selective radiofrequency pulses. Besides allowing additional scan acceleration, it offers a greater robustness and flexibility than IVI. The proposed method can be used with other field strengths, anatomies and other rFOX techniques. Magn Reson Med 78:88–96, 2017.
Original language | English |
---|---|
Pages (from-to) | 88–96 |
Number of pages | 9 |
Journal | Magnetic Resonance in Medicine |
Volume | 78 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jul 2017 |
Keywords
- innervolume imaging
- parallel imaging
- reduced field of excitation
- voxel exclusion