TY - JOUR
T1 - Chemotherapy-Related Cardiac Dysfunction
T2 - A Systematic Review of Genetic Variants Modulating Individual Risk
AU - Linschoten, Marijke
AU - Teske, Arco J
AU - Cramer, Maarten J
AU - van der Wall, Elsken
AU - Asselbergs, Folkert W
N1 - Publisher Copyright:
© 2018 Lippincott Williams and Wilkins. All rights reserved.
PY - 2018/1
Y1 - 2018/1
N2 - Chemotherapy-related cardiac dysfunction is a significant side effect of anticancer treatment. Risk stratification is based on clinical- and treatment-related risk factors that do not adequately explain individual susceptibility. The addition of genetic variants may improve risk assessment. We conducted a systematic literature search in PubMed and Embase, to identify studies investigating genetic risk factors for chemotherapy-related cardiac dysfunction. Included were articles describing genetic variants in humans altering susceptibility to chemotherapy-related cardiac dysfunction. The validity of identified studies was assessed by 10 criteria, including assessment of population stratification, statistical methodology, and replication of findings. We identified 40 studies: 34 exploring genetic risk factors for anthracycline-induced cardiotoxicity (n=9678) and 6 studies related to trastuzumab-associated cardiotoxicity (n=642). The majority (35/40) of studies had a candidate gene approach, whereas 5 genome-wide association studies have been performed. We identified 25 genetic variants in 20 genes and 2 intergenic variants reported significant at least once. The overall validity of studies was limited, with small cohorts, failure to assess population ancestry and lack of replication. SNPs with the most robust evidence up to this point are CELF4 rs1786814 (sarcomere structure and function), RARG rs2229774 (topoisomerase-2β expression), SLC28A3 rs7853758 (drug transport), UGT1A6 rs17863783 (drug metabolism), and 1 intergenic variant (rs28714259). Existing evidence supports the hypothesis that genetic variation contributes to chemotherapy-related cardiac dysfunction. Although many variants identified by this systematic review show potential to improve risk stratification, future studies are necessary for validation and assessment of their value in a diagnostic and prognostic setting.
AB - Chemotherapy-related cardiac dysfunction is a significant side effect of anticancer treatment. Risk stratification is based on clinical- and treatment-related risk factors that do not adequately explain individual susceptibility. The addition of genetic variants may improve risk assessment. We conducted a systematic literature search in PubMed and Embase, to identify studies investigating genetic risk factors for chemotherapy-related cardiac dysfunction. Included were articles describing genetic variants in humans altering susceptibility to chemotherapy-related cardiac dysfunction. The validity of identified studies was assessed by 10 criteria, including assessment of population stratification, statistical methodology, and replication of findings. We identified 40 studies: 34 exploring genetic risk factors for anthracycline-induced cardiotoxicity (n=9678) and 6 studies related to trastuzumab-associated cardiotoxicity (n=642). The majority (35/40) of studies had a candidate gene approach, whereas 5 genome-wide association studies have been performed. We identified 25 genetic variants in 20 genes and 2 intergenic variants reported significant at least once. The overall validity of studies was limited, with small cohorts, failure to assess population ancestry and lack of replication. SNPs with the most robust evidence up to this point are CELF4 rs1786814 (sarcomere structure and function), RARG rs2229774 (topoisomerase-2β expression), SLC28A3 rs7853758 (drug transport), UGT1A6 rs17863783 (drug metabolism), and 1 intergenic variant (rs28714259). Existing evidence supports the hypothesis that genetic variation contributes to chemotherapy-related cardiac dysfunction. Although many variants identified by this systematic review show potential to improve risk stratification, future studies are necessary for validation and assessment of their value in a diagnostic and prognostic setting.
KW - cardiotoxicity
KW - genetics
KW - heart failure
KW - prognosis
KW - risk factors
UR - http://www.scopus.com/inward/record.url?scp=85056089089&partnerID=8YFLogxK
U2 - 10.1161/CIRCGEN.117.001753
DO - 10.1161/CIRCGEN.117.001753
M3 - Review article
C2 - 29557343
SN - 2574-8300
VL - 11
JO - Circulation. Genomic and precision medicine
JF - Circulation. Genomic and precision medicine
IS - 1
M1 - e001753
ER -