Abstract
Morphological screening of mouse brains with known behavioral deficits can give great insight into the relationship between brain regions and their behavior. Oxytocin- and CD38-deficient mice have previously been shown to have behavioral phenotypes, such as restrictions in social memory, social interactions, and maternal behavior. CD38 is reported as an autism spectrum disorder (ASD) candidate gene and its behavioral phenotypes may be linked to ASD. To address whether these behavioral phenotypes relate to brain pathology and neuronal morphology, here we investigate the morphological changes in the CD38-deficient mice brains, with focus on the pathology and neuronal morphology of the cortex and hippocampus, using Nissl staining, immunohistochemistry, and Golgi staining. No difference was found in terms of cortical layer thickness. However, we found abnormalities in the number of neurons and neuronal morphology in the visual cortex and dentate gyrus (DG). In particular, there were arborisation differences between CD38 −/− and CD38 +/+ mice in the apical dendrites of the visual cortex and hippocampal CA1 pyramidal neurons. The data suggest that CD38 is implicated in appropriate development of brain regions important for social behavior.
Original language | English |
---|---|
Pages (from-to) | 114-125 |
Number of pages | 12 |
Journal | Neuroscience |
Volume | 372 |
DOIs | |
Publication status | Published - 21 Feb 2018 |
Keywords
- CD38
- autism spectrum disorder
- brain morphology
- hippocampus
- pyramidal neuron
- visual cortex