TY - JOUR
T1 - Biomarker analysis of the ASPEN study comparing zanubrutinib with ibrutinib for patients with Waldenström macroglobulinemia
AU - Tam, Constantine S
AU - Opat, Stephen
AU - D'Sa, Shirley P
AU - Jurczak, Wojciech
AU - Lee, Hui-Peng
AU - Cull, Gavin
AU - Owen, Roger G
AU - Marlton, Paula
AU - Wahlin, Björn E
AU - Garcia-Sanz, Ramon
AU - McCarthy, Helen
AU - Mulligan, Stephen P
AU - Tedeschi, Alessandra
AU - Castillo, Jorge J
AU - Czyz, Jaroslaw
AU - Fernández de Larrea, Carlos
AU - Belada, David
AU - Libby, Edward N
AU - Matous, Jeffrey V
AU - Motta, Marina
AU - Siddiqi, Tanya
AU - Tani, Monica
AU - Trněný, Marek
AU - Minnema, Monique C
AU - Buske, Christian
AU - Leblond, Véronique
AU - Treon, Steven P
AU - Trotman, Judith
AU - Wu, Binghao
AU - Yu, Yiling
AU - Shen, Zhirong
AU - Chan, Wai Y
AU - Schneider, Jingjing
AU - Allewelt, Heather
AU - Cohen, Aileen
AU - Dimopoulos, Meletios-Athanasios A
N1 - Publisher Copyright:
© 2024 American Society of Hematology. All rights reserved.
PY - 2024/4/9
Y1 - 2024/4/9
N2 - The phase 3 ASPEN trial (NCT03053440) compared Bruton tyrosine kinase inhibitors (BTKis), zanubrutinib and ibrutinib, in patients with Waldenström macroglobulinemia (WM). Post-hoc biomarker analysis was performed using next-generation sequencing on pretreatment bone marrow samples from 98 patients treated with zanubrutinib and 92 patients treated with ibrutinib with mutated (MUT) MYD88 and 20 patients with wild-type (WT) MYD88 treated with zanubrutinib. Of 329 mutations in 52 genes, mutations in CXCR4 (25.7%), TP53 (24.8%), ARID1A (15.7%), and TERT (9.0%) were most common. TP53MUT, ARID1AMUT, and TERTMUTwere associated with higher rates of CXCR4MUT(P < .05). Patients with CXCR4MUT(frameshift or nonsense [NS] mutations) had lower very good partial response (VGPR) and complete response rates (CR; 17.0% vs 37.2%, P = .020) and longer time to response (11.1 vs 8.4 months) than patients with CXCR4WTtreated with BTKis. CXCR4NSwas associated with inferior progression-free survival (PFS; hazard ratio [HR], 3.39; P = .017) in patients treated with ibrutinib but not in those treated with zanubrutinib (HR, 0.67; P = .598), but VGPR + CR rates were similar between treatment groups (14.3% vs 15.4%). Compared with ibrutinib, patients with CXCR4NStreated with zanubrutinib had a favorable major response rate (MRR; 85.7% vs 53.8%; P = .09) and PFS (HR, 0.30; P = .093). In patients with TP53MUT, significantly lower MRRs were observed for patients treated with ibrutinib (63.6% vs 85.7%; P = .04) but not for those treated with zanubrutinib (80.8% vs 81.9%; P = .978). In TP53MUT, compared with ibrutinib, patients treated with zanubrutinib had higher VGPR and CR (34.6% vs 13.6%; P < .05), numerically improved MRR (80.8% vs 63.6%; P = .11), and longer PFS (not reached vs 44.2 months; HR, 0.66; P = .37). Collectively, patients with WM with CXCR4MUTor TP53MUThad worse prognosis compared with patients with WT alleles, and zanubrutinib led to better clinical outcomes.
AB - The phase 3 ASPEN trial (NCT03053440) compared Bruton tyrosine kinase inhibitors (BTKis), zanubrutinib and ibrutinib, in patients with Waldenström macroglobulinemia (WM). Post-hoc biomarker analysis was performed using next-generation sequencing on pretreatment bone marrow samples from 98 patients treated with zanubrutinib and 92 patients treated with ibrutinib with mutated (MUT) MYD88 and 20 patients with wild-type (WT) MYD88 treated with zanubrutinib. Of 329 mutations in 52 genes, mutations in CXCR4 (25.7%), TP53 (24.8%), ARID1A (15.7%), and TERT (9.0%) were most common. TP53MUT, ARID1AMUT, and TERTMUTwere associated with higher rates of CXCR4MUT(P < .05). Patients with CXCR4MUT(frameshift or nonsense [NS] mutations) had lower very good partial response (VGPR) and complete response rates (CR; 17.0% vs 37.2%, P = .020) and longer time to response (11.1 vs 8.4 months) than patients with CXCR4WTtreated with BTKis. CXCR4NSwas associated with inferior progression-free survival (PFS; hazard ratio [HR], 3.39; P = .017) in patients treated with ibrutinib but not in those treated with zanubrutinib (HR, 0.67; P = .598), but VGPR + CR rates were similar between treatment groups (14.3% vs 15.4%). Compared with ibrutinib, patients with CXCR4NStreated with zanubrutinib had a favorable major response rate (MRR; 85.7% vs 53.8%; P = .09) and PFS (HR, 0.30; P = .093). In patients with TP53MUT, significantly lower MRRs were observed for patients treated with ibrutinib (63.6% vs 85.7%; P = .04) but not for those treated with zanubrutinib (80.8% vs 81.9%; P = .978). In TP53MUT, compared with ibrutinib, patients treated with zanubrutinib had higher VGPR and CR (34.6% vs 13.6%; P < .05), numerically improved MRR (80.8% vs 63.6%; P = .11), and longer PFS (not reached vs 44.2 months; HR, 0.66; P = .37). Collectively, patients with WM with CXCR4MUTor TP53MUThad worse prognosis compared with patients with WT alleles, and zanubrutinib led to better clinical outcomes.
UR - http://www.scopus.com/inward/record.url?scp=85189030305&partnerID=8YFLogxK
U2 - 10.1182/bloodadvances.2023010906
DO - 10.1182/bloodadvances.2023010906
M3 - Article
C2 - 38315878
SN - 2473-9529
VL - 8
SP - 1639
EP - 1650
JO - Blood Advances
JF - Blood Advances
IS - 7
ER -