Biofabrication Strategies for Oral Soft Tissue Regeneration

Maedeh Rahimnejad, Hardik Makkar, Renan Dal-Fabbro, Jos Malda, Gopu Sriram*, Marco C. Bottino*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

5 Downloads (Pure)

Abstract

Gingival recession, a prevalent condition affecting the gum tissues, is characterized by the exposure of tooth root surfaces due to the displacement of the gingival margin. This review explores conventional treatments, highlighting their limitations and the quest for innovative alternatives. Importantly, it emphasizes the critical considerations in gingival tissue engineering leveraging on cells, biomaterials, and signaling factors. Successful tissue-engineered gingival constructs hinge on strategic choices such as cell sources, scaffold design, mechanical properties, and growth factor delivery. Unveiling advancements in recent biofabrication technologies like 3D bioprinting, electrospinning, and microfluidic organ-on-chip systems, this review elucidates their precise control over cell arrangement, biomaterials, and signaling cues. These technologies empower the recapitulation of microphysiological features, enabling the development of gingival constructs that closely emulate the anatomical, physiological, and functional characteristics of native gingival tissues. The review explores diverse engineering strategies aiming at the biofabrication of realistic tissue-engineered gingival grafts. Further, the parallels between the skin and gingival tissues are highlighted, exploring the potential transfer of biofabrication approaches from skin tissue regeneration to gingival tissue engineering. To conclude, the exploration of innovative biofabrication technologies for gingival tissues and inspiration drawn from skin tissue engineering look forward to a transformative era in regenerative dentistry with improved clinical outcomes.

Original languageEnglish
Article number2304537
Number of pages29
JournalAdvanced Healthcare Materials
Volume13
Issue number18
Early online date26 Mar 2024
DOIs
Publication statusPublished - 17 Jul 2024

Keywords

  • biofabrication
  • bioprinting
  • gingival recession
  • regeneration
  • skin
  • tissue engineering

Fingerprint

Dive into the research topics of 'Biofabrication Strategies for Oral Soft Tissue Regeneration'. Together they form a unique fingerprint.

Cite this