TY - JOUR
T1 - Bioactive fish scale incorporated chitosan biocomposite scaffolds for bone tissue engineering
AU - Kara, Aylin
AU - Tamburaci, Sedef
AU - Tihminlioglu, Funda
AU - Havitcioglu, Hasan
N1 - Publisher Copyright:
© 2019
PY - 2019/6/1
Y1 - 2019/6/1
N2 - Recently, biologically active natural macromolecules have come into prominence to be used as potential materials in scaffold design due to their unique characteristics which can mimic the human tissue structure with their physical and chemical similarity. Among them, fish scale (FS) is a biologically active material with its structural similarity to bone tissue due to including type I collagen and hydroxyapatite and also have distinctive collagen arrangement. In the present study, it is aimed to design a novel composite scaffold with FS incorporation into chitosan (CH) matrix for bone tissue regeneration. Therefore, two biological macromolecules, fish scale and chitosan, were combined to produce bio-composite scaffold. First, FS were decellularized with the chemical method and disrupted physically as microparticles (100 μm), followed by dispersal in CH with ultrasonic homogenisation, CH/FS scaffolds were fabricated by lyophilization technique. Scaffolds were characterized physically, chemically, mechanically, and morphologically. SEM and porosity results showed that CH/FS scaffolds have uniform pore structure showing high porosity. Mechanical properties and degradation rate are enhanced with increasing FS content. In vitro cytotoxicity, proliferation and osteogenic activity of the scaffolds were evaluated with SaOS-2 cell line. CH/FS scaffolds did not show any cytotoxicity effect and the cells were gradually proliferated during culture period. Cell viability results showed that, FS microparticles had a proliferative effect on SaOS-2 cells when compared to control group. ALP activity and biomineralization studies indicated that FS microparticle reinforcement increased osteogenic activity during culture period. As a biological macromolecule with unique characteristics, FS was found as cytocompatible and provided promising effects as reinforcement agents for polymeric scaffolds. In conclusion, fabricated CH/FS bio-composites showed potential for bone tissue engineering applications.
AB - Recently, biologically active natural macromolecules have come into prominence to be used as potential materials in scaffold design due to their unique characteristics which can mimic the human tissue structure with their physical and chemical similarity. Among them, fish scale (FS) is a biologically active material with its structural similarity to bone tissue due to including type I collagen and hydroxyapatite and also have distinctive collagen arrangement. In the present study, it is aimed to design a novel composite scaffold with FS incorporation into chitosan (CH) matrix for bone tissue regeneration. Therefore, two biological macromolecules, fish scale and chitosan, were combined to produce bio-composite scaffold. First, FS were decellularized with the chemical method and disrupted physically as microparticles (100 μm), followed by dispersal in CH with ultrasonic homogenisation, CH/FS scaffolds were fabricated by lyophilization technique. Scaffolds were characterized physically, chemically, mechanically, and morphologically. SEM and porosity results showed that CH/FS scaffolds have uniform pore structure showing high porosity. Mechanical properties and degradation rate are enhanced with increasing FS content. In vitro cytotoxicity, proliferation and osteogenic activity of the scaffolds were evaluated with SaOS-2 cell line. CH/FS scaffolds did not show any cytotoxicity effect and the cells were gradually proliferated during culture period. Cell viability results showed that, FS microparticles had a proliferative effect on SaOS-2 cells when compared to control group. ALP activity and biomineralization studies indicated that FS microparticle reinforcement increased osteogenic activity during culture period. As a biological macromolecule with unique characteristics, FS was found as cytocompatible and provided promising effects as reinforcement agents for polymeric scaffolds. In conclusion, fabricated CH/FS bio-composites showed potential for bone tissue engineering applications.
KW - Bone tissue engineering
KW - CH
KW - Composite scaffold
KW - Fish scale
UR - http://www.scopus.com/inward/record.url?scp=85062155631&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2019.02.067
DO - 10.1016/j.ijbiomac.2019.02.067
M3 - Article
C2 - 30797008
SN - 0141-8130
VL - 130
SP - 266
EP - 279
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
ER -