Automatic classification of focal liver lesions based on clinical DCE-MR and T2-weighted images: A feasibility study

M. J.A. Jansen, H. J. Kuijf, J. P.W. Pluim

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

Abstract

Focal liver lesion classification is an important part of diagnostics. In clinical practice, T2-weighted (T2W) and dynamic contrast enhanced (DCE) MR images are used to determine the type of lesion. For automatic liver lesion classification only T2W images are exploited. In this feasibility study, a multi-modal approach for automatic lesion classification of five lesion classes (adenoma, cyst, haemangioma, HCC, and metastasis) is studied. Features are derived from four sets: (A) non-corrected, and (B) motion corrected DCE-MRI, (C) T2W images, and (D) B+C combined, originating from 43 patients. An extremely randomized forest is used as classifier. The results show that motion corrected DCE-MRI features are a valuable addition to the T2W features, and improve the accuracy in discriminating benign and malignant lesions, as well as the classification of the five lesion classes. The multimodal approach shows promising results for an automatic liver lesion classification.

Original languageEnglish
Title of host publication2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018
PublisherIEEE Computer Society
Pages245-248
Number of pages4
Volume2018-April
ISBN (Electronic)9781538636367
DOIs
Publication statusPublished - 23 May 2018
Event15th IEEE International Symposium on Biomedical Imaging, ISBI 2018 - Washington, United States
Duration: 4 Apr 20187 Apr 2018

Conference

Conference15th IEEE International Symposium on Biomedical Imaging, ISBI 2018
Country/TerritoryUnited States
CityWashington
Period4/04/187/04/18

Keywords

  • Classification
  • DCE-MRI
  • Liver

Fingerprint

Dive into the research topics of 'Automatic classification of focal liver lesions based on clinical DCE-MR and T2-weighted images: A feasibility study'. Together they form a unique fingerprint.

Cite this