Abstract
Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental disorders with shared symptoms in the area of communication and language, restricted interests, and stereotyped and social behaviors. Causes lie in perturbations of brain development, which can be manifold, but genetic factors are prominent among these. Genetic studies have pointed to hundreds of causative or susceptibility genes in ASD, making it difficult to find common underlying pathogenic mechanisms. Careful dissection of molecular and cellular mechanisms are needed to define the molecular targets that can translate into therapeutic strategies. On page 1199 of this issue, Bidinosti et al. (1) uncover defects in a molecular machinery of a genetic ASD mouse model. This allowed the authors to design specific chemical interventions that relieve cellular and behavioral autistic-like features. In addition, Yi et al. (2) report a channelopathy in neurons that may predispose to autism. The discoveries raise hope for developing new drugs that help patients with ASD.
Original language | English |
---|---|
Pages (from-to) | 1153-1154 |
Number of pages | 2 |
Journal | Science |
Volume | 351 |
Issue number | 6278 |
DOIs | |
Publication status | Published - 2016 |