Asymptotic normality of nonparametric kernel type deconvolution density estimators: Crossing the cauchy boundary

A. J. Van Es*, H. W. Uh

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

18 Citations (Scopus)

Abstract

We derive asymptotic normality of kernel type deconvolution density estimators. In particular, we consider deconvolution problems where the known component of the convolution has a symmetric λ-stable distribution with 0 < λ ≤ 2. It turns out that the limit behavior changes if the exponent parameter λ passes the value 1, the case of Cauchy deconvolution.

Original languageEnglish
Pages (from-to)261-277
Number of pages17
JournalJournal of Nonparametric Statistics
Volume16
Issue number1-2
DOIs
Publication statusPublished - Feb 2004
Externally publishedYes

Keywords

  • Asymptotic normality
  • Deconvolution
  • Kernel estimation

Fingerprint

Dive into the research topics of 'Asymptotic normality of nonparametric kernel type deconvolution density estimators: Crossing the cauchy boundary'. Together they form a unique fingerprint.

Cite this