Association between work sick-leave absenteeism and SARS-CoV-2 notifications in the Netherlands during the COVID-19 epidemic

Martijn G. Keet*, Bronke Boudewijns, Femke Jongenotter, Senna van Iersel, Cornelis H. van Werkhoven, Rianne B. van Gageldonk-Lafeber, Bram W. Wisse, Liselotte van Asten

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Background: Alternative data sources for surveillance have gained importance in maintaining coronavirus disease 2019 (COVID-19) situational awareness as nationwide testing has drastically decreased. Therefore, we explored whether rates of sick-leave from work are associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) notification trends and at which lag, to indicate the usefulness of sick-leave data for COVID-19 surveillance. Methods: We explored trends during the COVID-19 epidemic of weekly sick-leave rates and SARS-CoV-2 notification rates from 1 June 2020 to 10 April 2022. Separate time series were inspected visually. Then, Spearman correlation coefficients were calculated at different lag and lead times of zero to four weeks between sick-leave and SARS-CoV-2 notification rates. We distinguished between four SARS-CoV-2 variant periods, two labour sectors and overall, and all-cause sick-leave versus COVID-19-specific sick-leave. Results: The correlation coefficients between weekly all-cause sick-leave and SARS-CoV-2 notification rate at optimal lags were between 0.58 and 0.93, varying by the variant period and sector (overall: 0.83, lag −1; 95% CI [0.76, 0.88]). COVID-19-specific sick-leave correlations were higher than all-cause sick-leave correlations. Correlations were slightly lower in healthcare and education than overall. The highest correlations were mostly at lag −2 and −1 for all-cause sick-leave, meaning that sick-leave preceded SARS-CoV-2 notifications. Correlations were highest mostly at lag zero for COVID-19-specific sick-leave (coinciding with SARS-CoV-2 notifications). Conclusion: All-cause sick-leave might offer an earlier indication and evolution of trends in SARS-CoV-2 rates, especially when testing is less available. Sick-leave data may complement COVID-19 and other infectious disease surveillance systems as a syndromic data source.

Original languageEnglish
Article numbere051
Pages (from-to)497-504
Number of pages8
JournalEuropean journal of public health
Volume34
Issue number3
DOIs
Publication statusPublished - 1 Jun 2024

Fingerprint

Dive into the research topics of 'Association between work sick-leave absenteeism and SARS-CoV-2 notifications in the Netherlands during the COVID-19 epidemic'. Together they form a unique fingerprint.

Cite this