TY - JOUR
T1 - Artificial intelligence-assisted quantitative CT analysis of airway changes following SABR for central lung tumors
AU - Tekatli, Hilâl
AU - Bohoudi, Omar
AU - Hardcastle, Nicholas
AU - Palacios, Miguel A
AU - Schneiders, Famke L
AU - Bruynzeel, Anna M E
AU - Siva, Shankar
AU - Senan, Suresh
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024/9
Y1 - 2024/9
N2 - INTRODUCTION: Use of stereotactic ablative radiotherapy (SABR) for central lung tumors can result in up to a 35% incidence of late pulmonary toxicity. We evaluated an automated scoring method to quantify post-SABR bronchial changes by using artificial intelligence (AI)-based airway segmentation.MATERIALS AND METHODS: Central lung SABR patients treated at Amsterdam UMC (AUMC, internal reference dataset) and Peter MacCallum Cancer Centre (PMCC, external validation dataset) were identified. Patients were eligible if they had pre- and post-SABR CT scans with ≤ 1 mm resolution. The first step of the automated scoring method involved AI-based airway auto-segmentation using MEDPSeg, an end-to-end deep learning-based model. The Vascular Modeling Toolkit in 3D Slicer was then used to extract a centerline curve through the auto-segmented airway lumen, and cross-sectional measurements were computed along each bronchus for all CT scans. For AUMC patients, airway stenosis/occlusion was evaluated by both visual assessment and automated scoring. Only the automated method was applied to the PMCC dataset.RESULTS: Study patients comprised 26 from AUMC, and 33 from PMCC. Visual scoring identified stenosis/occlusion in 8 AUMC patients (31 %), most frequently in the segmental bronchi. After airway auto-segmentation, minor manual edits were needed in 9 % of patients. Segmentation for a single scan averaged 83sec (range 73-136). Automated scoring nearly doubled detected airway stenosis/occlusion (n = 15, 58 %), and allowed for earlier detection in 5/8 patients who had also visually scored changes. Estimated rates were 48 % and 66 % at 1- and 2-years, respectively, for the internal dataset. The automated detection rate was 52 % in the external dataset, with 1- and 2-year risks of 56 % and 61 %, respectively.CONCLUSION: An AI-based automated scoring method allows for detection of more bronchial stenosis/occlusion after lung SABR, and at an earlier time-point. This tool can facilitate studies to determine early airway changes and establish more reliable airway tolerance doses.
AB - INTRODUCTION: Use of stereotactic ablative radiotherapy (SABR) for central lung tumors can result in up to a 35% incidence of late pulmonary toxicity. We evaluated an automated scoring method to quantify post-SABR bronchial changes by using artificial intelligence (AI)-based airway segmentation.MATERIALS AND METHODS: Central lung SABR patients treated at Amsterdam UMC (AUMC, internal reference dataset) and Peter MacCallum Cancer Centre (PMCC, external validation dataset) were identified. Patients were eligible if they had pre- and post-SABR CT scans with ≤ 1 mm resolution. The first step of the automated scoring method involved AI-based airway auto-segmentation using MEDPSeg, an end-to-end deep learning-based model. The Vascular Modeling Toolkit in 3D Slicer was then used to extract a centerline curve through the auto-segmented airway lumen, and cross-sectional measurements were computed along each bronchus for all CT scans. For AUMC patients, airway stenosis/occlusion was evaluated by both visual assessment and automated scoring. Only the automated method was applied to the PMCC dataset.RESULTS: Study patients comprised 26 from AUMC, and 33 from PMCC. Visual scoring identified stenosis/occlusion in 8 AUMC patients (31 %), most frequently in the segmental bronchi. After airway auto-segmentation, minor manual edits were needed in 9 % of patients. Segmentation for a single scan averaged 83sec (range 73-136). Automated scoring nearly doubled detected airway stenosis/occlusion (n = 15, 58 %), and allowed for earlier detection in 5/8 patients who had also visually scored changes. Estimated rates were 48 % and 66 % at 1- and 2-years, respectively, for the internal dataset. The automated detection rate was 52 % in the external dataset, with 1- and 2-year risks of 56 % and 61 %, respectively.CONCLUSION: An AI-based automated scoring method allows for detection of more bronchial stenosis/occlusion after lung SABR, and at an earlier time-point. This tool can facilitate studies to determine early airway changes and establish more reliable airway tolerance doses.
UR - http://www.scopus.com/inward/record.url?scp=85196199523&partnerID=8YFLogxK
U2 - 10.1016/j.radonc.2024.110376
DO - 10.1016/j.radonc.2024.110376
M3 - Article
C2 - 38857700
SN - 0167-8140
VL - 198
JO - Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
JF - Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
M1 - 110376
ER -