TY - JOUR
T1 - An overview of methods for network meta-analysis using individual participant data
T2 - when do benefits arise?
AU - Debray, Thomas PA
AU - Schuit, Ewoud
AU - Efthimiou, Orestis
AU - Reitsma, Johannes B
AU - Ioannidis, John PA
AU - Salanti, Georgia
AU - Moons, Karel GM
N1 - © The Author(s) 2016.
PY - 2018/5/1
Y1 - 2018/5/1
N2 - Network meta-analysis (NMA) is a common approach to summarizing relative treatment effects from randomized trials with different treatment comparisons. Most NMAs are based on published aggregate data (AD) and have limited possibilities for investigating the extent of network consistency and between-study heterogeneity. Given that individual participant data (IPD) are considered the gold standard in evidence synthesis, we explored statistical methods for IPD-NMA and investigated their potential advantages and limitations, compared with AD-NMA. We discuss several one-stage random-effects NMA models that account for within-trial imbalances, treatment effect modifiers, missing response data and longitudinal responses. We illustrate all models in a case study of 18 antidepressant trials with a continuous endpoint (the Hamilton Depression Score). All trials suffered from drop-out; missingness of longitudinal responses ranged from 21 to 41% after 6 weeks follow-up. Our results indicate that NMA based on IPD may lead to increased precision of estimated treatment effects. Furthermore, it can help to improve network consistency and explain between-study heterogeneity by adjusting for participant-level effect modifiers and adopting more advanced models for dealing with missing response data. We conclude that implementation of IPD-NMA should be considered when trials are affected by substantial drop-out rate, and when treatment effects are potentially influenced by participant-level covariates.
AB - Network meta-analysis (NMA) is a common approach to summarizing relative treatment effects from randomized trials with different treatment comparisons. Most NMAs are based on published aggregate data (AD) and have limited possibilities for investigating the extent of network consistency and between-study heterogeneity. Given that individual participant data (IPD) are considered the gold standard in evidence synthesis, we explored statistical methods for IPD-NMA and investigated their potential advantages and limitations, compared with AD-NMA. We discuss several one-stage random-effects NMA models that account for within-trial imbalances, treatment effect modifiers, missing response data and longitudinal responses. We illustrate all models in a case study of 18 antidepressant trials with a continuous endpoint (the Hamilton Depression Score). All trials suffered from drop-out; missingness of longitudinal responses ranged from 21 to 41% after 6 weeks follow-up. Our results indicate that NMA based on IPD may lead to increased precision of estimated treatment effects. Furthermore, it can help to improve network consistency and explain between-study heterogeneity by adjusting for participant-level effect modifiers and adopting more advanced models for dealing with missing response data. We conclude that implementation of IPD-NMA should be considered when trials are affected by substantial drop-out rate, and when treatment effects are potentially influenced by participant-level covariates.
KW - Meta-analysis
KW - network meta-analysis
KW - individual participant data
KW - missing data
KW - repeated measurements
KW - mixed treatment comparison
UR - http://www.scopus.com/inward/record.url?scp=85016815457&partnerID=8YFLogxK
U2 - 10.1177/0962280216660741
DO - 10.1177/0962280216660741
M3 - Article
C2 - 27487843
VL - 27
SP - 1351
EP - 1364
JO - Statistical Methods in Medical Research
JF - Statistical Methods in Medical Research
IS - 5
ER -