TY - JOUR
T1 - Advances in therapy for spinal muscular atrophy
T2 - Promises and challenges
AU - Groen, Ewout J.N.
AU - Talbot, Kevin
AU - Gillingwater, Thomas H.
N1 - Publisher Copyright:
© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
PY - 2018/4/1
Y1 - 2018/4/1
N2 - Spinal muscular atrophy (SMA) is a devastating motor neuron disease that predominantly affects children and represents the most common cause of hereditary infant mortality. The condition results from deleterious variants in SMN1, which lead to depletion of the survival motor neuron protein (SMN). Now, 20 years after the discovery of this genetic defect, a major milestone in SMA and motor neuron disease research has been reached with the approval of the first disease-modifying therapy for SMA by US and European authorities - the antisense oligonucleotide nusinersen. At the same time, promising data from early-stage clinical trials of SMN1 gene therapy have indicated that additional therapeutic options are likely to emerge for patients with SMA in the near future. However, the approval of nusinersen has generated a number of immediate and substantial medical, ethical and financial implications that have the potential to resonate beyond the specific treatment of SMA. Here, we provide an overview of the rapidly evolving therapeutic landscape for SMA, highlighting current achievements and future opportunities. We also discuss how these developments are providing important lessons for the emerging second generation of combinatorial ('SMN-plus') therapies that are likely to be required to generate robust treatments that are effective across a patient's lifespan.
AB - Spinal muscular atrophy (SMA) is a devastating motor neuron disease that predominantly affects children and represents the most common cause of hereditary infant mortality. The condition results from deleterious variants in SMN1, which lead to depletion of the survival motor neuron protein (SMN). Now, 20 years after the discovery of this genetic defect, a major milestone in SMA and motor neuron disease research has been reached with the approval of the first disease-modifying therapy for SMA by US and European authorities - the antisense oligonucleotide nusinersen. At the same time, promising data from early-stage clinical trials of SMN1 gene therapy have indicated that additional therapeutic options are likely to emerge for patients with SMA in the near future. However, the approval of nusinersen has generated a number of immediate and substantial medical, ethical and financial implications that have the potential to resonate beyond the specific treatment of SMA. Here, we provide an overview of the rapidly evolving therapeutic landscape for SMA, highlighting current achievements and future opportunities. We also discuss how these developments are providing important lessons for the emerging second generation of combinatorial ('SMN-plus') therapies that are likely to be required to generate robust treatments that are effective across a patient's lifespan.
UR - http://www.scopus.com/inward/record.url?scp=85044513308&partnerID=8YFLogxK
U2 - 10.1038/nrneurol.2018.4
DO - 10.1038/nrneurol.2018.4
M3 - Review article
C2 - 29422644
AN - SCOPUS:85044513308
SN - 1759-4758
VL - 14
SP - 214
EP - 224
JO - Nature Reviews Neurology
JF - Nature Reviews Neurology
IS - 4
ER -