Accurate detection of circulating tumor DNA using nanopore consensus sequencing

Alessio Marcozzi, Myrthe Jager, Martin Elferink, Roy Straver, Joost H van Ginkel, Boris Peltenburg, Li-Ting Chen, Ivo Renkens, Joyce van Kuik, Chris Terhaard, Remco de Bree, Lot A Devriese, Stefan M Willems, Wigard P Kloosterman, Jeroen de Ridder

Research output: Contribution to journalArticleAcademicpeer-review

13 Downloads (Pure)

Abstract

Levels of circulating tumor DNA (ctDNA) in liquid biopsies may serve as a sensitive biomarker for real-time, minimally-invasive tumor diagnostics and monitoring. However, detecting ctDNA is challenging, as much fewer than 5% of the cell-free DNA in the blood typically originates from the tumor. To detect lowly abundant ctDNA molecules based on somatic variants, extremely sensitive sequencing methods are required. Here, we describe a new technique, CyclomicsSeq, which is based on Oxford Nanopore sequencing of concatenated copies of a single DNA molecule. Consensus calling of the DNA copies increased the base-calling accuracy ~60×, enabling accurate detection of TP53 mutations at frequencies down to 0.02%. We demonstrate that a TP53-specific CyclomicsSeq assay can be successfully used to monitor tumor burden during treatment for head-and-neck cancer patients. CyclomicsSeq can be applied to any genomic locus and offers an accurate diagnostic liquid biopsy approach that can be implemented in clinical workflows.

Original languageEnglish
Article number106
Pages (from-to)1-11
Journalnpj Genomic Medicine
Volume6
Issue number1
DOIs
Publication statusPublished - 9 Dec 2021

Fingerprint

Dive into the research topics of 'Accurate detection of circulating tumor DNA using nanopore consensus sequencing'. Together they form a unique fingerprint.

Cite this