1399 H&E-stained sentinel lymph node sections of breast cancer patients: The CAMELYON dataset

Geert Litjens*, Peter Bandi, Babak Ehteshami Bejnordi, Oscar Geessink, Maschenka Balkenhol, Peter Bult, Altuna Halilovic, Meyke Hermsen, Rob van de Loo, Rob Vogels, Quirine F. Manson, Nikolas Stathonikos, Alexi Baidoshvili, Paul van Diest, Carla Wauters, Marcory van Dijk, Jeroen van der Laak

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)

Abstract

Background: The presence of lymph node metastases is one of the most important factors in breast cancer prognosis. The most common way to assess regional lymph node status is the sentinel lymph node procedure. The sentinel lymph node is the most likely lymph node to contain metastasized cancer cells and is excised, histopathologically processed, and examined by a pathologist. This tedious examination process is time-consuming and can lead to small metastases being missed. However, recent advances in whole-slide imaging and machine learning have opened an avenue for analysis of digitized lymph node sections with computer algorithms. For example, convolutional neural networks, a type of machine-learning algorithm, can be used to automatically detect cancer metastases in lymph nodes with high accuracy. To train machine-learning models, large, well-curated datasets are needed. Results: We released a dataset of 1,399 annotated whole-slide images (WSIs) of lymph nodes, both with and without metastases, in 3 terabytes of data in the context of the CAMELYON16 and CAMELYON17 Grand Challenges. Slides were collected from five medical centers to cover a broad range of image appearance and staining variations. Each WSI has a slide-level label indicating whether it contains no metastases, macro-metastases, micro-metastases, or isolated tumor cells. Furthermore, for 209 WSIs, detailed hand-drawn contours for all metastases are provided. Last, open-source software tools to visualize and interact with the data have been made available. Conclusions: A unique dataset of annotated, whole-slide digital histopathology images has been provided with high potential for re-use.

Original languageEnglish
Article numbergiy065
JournalGigaScience
Volume7
Issue number6
DOIs
Publication statusPublished - 31 May 2018

Keywords

  • Breast cancer
  • Grand challenge
  • Lymph node metastases
  • Sentinel node
  • Whole-slide images
  • sentinel node
  • breast cancer
  • whole-slide images
  • grand challenge
  • lymph node metastases
  • Breast Neoplasms/pathology
  • Humans
  • Databases as Topic
  • Lymphatic Metastasis/pathology
  • Algorithms
  • Staining and Labeling
  • Female
  • Sentinel Lymph Node/pathology
  • Neoplasm Staging

Fingerprint

Dive into the research topics of '1399 H&E-stained sentinel lymph node sections of breast cancer patients: The CAMELYON dataset'. Together they form a unique fingerprint.

Cite this